2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应隶属度函数的特征选择

谢衍涛 桑农 张天序

谢衍涛, 桑农, 张天序. 基于自适应隶属度函数的特征选择. 自动化学报, 2006, 32(4): 496-503.
引用本文: 谢衍涛, 桑农, 张天序. 基于自适应隶属度函数的特征选择. 自动化学报, 2006, 32(4): 496-503.
XIE Yan-Tao, SANG Nong, ZHANG Tian-Xu. Feature Selection Based on Adaptive Fuzzy Membership Functions. ACTA AUTOMATICA SINICA, 2006, 32(4): 496-503.
Citation: XIE Yan-Tao, SANG Nong, ZHANG Tian-Xu. Feature Selection Based on Adaptive Fuzzy Membership Functions. ACTA AUTOMATICA SINICA, 2006, 32(4): 496-503.

基于自适应隶属度函数的特征选择

详细信息
    通讯作者:

    桑农

Feature Selection Based on Adaptive Fuzzy Membership Functions

More Information
    Corresponding author: SANG Nong
  • 摘要: Neuro-fuzzy (NF) networks are adaptive fuzzy inference systems (FIS) and have been applied to feature selection by some researchers. However, their rule number will grow exponentially as the data dimension increases. On the other hand, feature selection algorithms with artificial neural networks (ANN) usually require normalization of input data, which will probably change some characteristics of original data that are important for classification. To overcome the problems mentioned above, this paper combines the fuzzification layer of the neuro-fuzzy system with the multi-layer perceptron (MLP) to form a new artificial neural network. Furthermore, fuzzification strategy and feature measurement based on membership space are proposed for feature selection.Finally, experiments with both natural and artificial data are carried out to compare with other methods, and the results approve the validity of the algorithm.
  • 加载中
计量
  • 文章访问数:  3057
  • HTML全文浏览量:  59
  • PDF下载量:  1720
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-10-12
  • 修回日期:  2006-03-01
  • 刊出日期:  2006-07-20

目录

    /

    返回文章
    返回