同时不变子空间与鲁棒干扰解耦
Simultaneous Invariant Subspaces and Robust Disturbance Decoupling
-
摘要: 本文主要讨论了同时不变子空间的三种特征:即时域特征、频域特征和几何特征.特别对 包含在给定子空间H中的最大同时不变子空间给出了新的描述.利用这些结果,文中首先给 出了离散扰动系统鲁棒干扰解耦问题的充要条件,然后推广到连续扰动系统,获得了一个 Kharitonov型的结果,使得两种扰动下的鲁棒干扰解耦问题在理论上得到了完整的解决.Abstract: This peper is mainly devoted to the study of three kinds of characterizations of simultaneous invariant subspaces, i.e., time domain characterization, frequency domain characterization, and geometric characterization. In particular, the paper gives a new description of the largest simultaneous invariant subspace contained in a given subspace H. Based on these results, a necessary and suffcient condition for robust disturbance decoupling problem of discrete perturbation systems is first given. Then, by extending the discuss to the continuous perturbation case. a Kharitonov-like result is derived. Thus, robust disturbance decoupling problems under two kinds of perturbations are entirely solved in theory.
计量
- 文章访问数: 2137
- HTML全文浏览量: 98
- PDF下载量: 963
- 被引次数: 0