2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模糊神经模型的电厂协调预测控制

刘向杰 刘吉臻

刘向杰, 刘吉臻. 基于模糊神经模型的电厂协调预测控制. 自动化学报, 2006, 32(5): 785-790.
引用本文: 刘向杰, 刘吉臻. 基于模糊神经模型的电厂协调预测控制. 自动化学报, 2006, 32(5): 785-790.
LIU Xiang-Jie, LIU Ji-Zhen. Constrained Power Plant Coordinated Predictive Control Using Neurofuzzy Model. ACTA AUTOMATICA SINICA, 2006, 32(5): 785-790.
Citation: LIU Xiang-Jie, LIU Ji-Zhen. Constrained Power Plant Coordinated Predictive Control Using Neurofuzzy Model. ACTA AUTOMATICA SINICA, 2006, 32(5): 785-790.

基于模糊神经模型的电厂协调预测控制

详细信息
    通讯作者:

    刘向杰

Constrained Power Plant Coordinated Predictive Control Using Neurofuzzy Model

More Information
    Corresponding author: LIU Xiang-Jie
  • 摘要: In unit steam-boiler generation, a coordinated control strategy is required to ensure a higher rate of load change without violating thermal constraints. The process is characterized by nonlinearity and uncertainty. While neural networks can model highly complex nonlinear dynamical systems, they produce black box models. This has led to significant interest in neuro-fuzzy networks (NFNs) to represent a nonlinear dynamical process by a set of locally valid and simpler submodels. Two alternative methods of exploiting the NFNs within a generalised predictive control (GPC) framework for nonlinear model predictive control are described. Coordinated control of steam-boiler generation using the two nonlinear GPC methods show excellent tracking and disturbance rejection results and improved performance compared with conventional linear GPC.
  • 加载中
计量
  • 文章访问数:  3625
  • HTML全文浏览量:  51
  • PDF下载量:  3131
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-06-10
  • 修回日期:  2006-02-12
  • 刊出日期:  2006-09-20

目录

    /

    返回文章
    返回