[1] Bloom D E, Canning D, Lubet A. Global population aging: Facts, challenges, solutions & perspectives. Daedalus, 2015, 144(2): 80−92 doi: 10.1162/DAED_a_00332
[2] Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 1989, 77(4): 541−580 doi: 10.1109/5.24143
[3] Joaquin López, Diego Pérez, Zalama E. A framework for building mobile single and multi-robot applications. Robotics and Autonomous Systems, 2011, 59(3−4): 151−162 doi: 10.1016/j.robot.2011.01.004
[4] Ziparo V A, Iocchi L, Lima P U, Nardi D, Palamara P F. Petri net plans. Autonomous Agents and Multi-Agent Systems, 2011, 23(3): 344−383 doi: 10.1007/s10458-010-9146-1
[5] Maza I, Caballero F, Capitán J, Martinez-de-Dios J R, Ollero A. Experimental results in multi-UAV coordination for disaster management and civil security applications. Journal of Intelligent & Robotic Systems, 2011, 61(1−4): 563−585
[6] Farinelli A, Nicoló Boscolo, Zanotto E, Pagello E. Advanced approaches for multi-robot coordination in logistic scenarios. Robotics and Autonomous Systems, 2017, 90: 34−44 doi: 10.1016/j.robot.2016.08.010
[7] Öztürk S, Kuzucuoǧlu A E. A multi-robot coordination approach for autonomous runway foreign object debris (FOD) clearance. Robotics and Autonomous Systems, 2016, 75: 244−259 doi: 10.1016/j.robot.2015.09.022
[8] Jones E G, Dias M B, Stentz A. Time-extended multi-robot coordination for domains with intra-path constraints. Autonomous Robots, 2011, 30(1): 41−56 doi: 10.1007/s10514-010-9202-3
[9] Kala R. Multi-robot path planning using co-evolutionary genetic programming. Expert Systems with Applications, 2012, 39(3): 3817−3831 doi: 10.1016/j.eswa.2011.09.090
[10] Haghighi R, Cheah C C. Multi-group coordination control for robot swarms. Automatica, 2012, 48(10): 2526−2534 doi: 10.1016/j.automatica.2012.03.028
[11] Puig D, García M A, Wu L. A new global optimization strategy for coordinated multi-robot exploration: Development and comparative evaluation. Robotics and Autonomous Systems, 2011, 59(9): 635−653 doi: 10.1016/j.robot.2011.05.004
[12] Nieto-Granda C, Rogers III J G, Christensen H I. Coordination strategies for multi-robot exploration and mapping. The International Journal of Robotics Research, 2014, 33(4): 519−533 doi: 10.1177/0278364913515309
[13] 吴培良, 孔令富, 孔亮. 一种普适机器人系统同时定位、标定与建图方法. 自动化学报, 2012, 38(4): 618−631

Wu Pei-Liang, Kong Ling-Fu, Kong Liang. A solution to simultaneous localization, calibration and mapping of ubiquitous robot system. Acta Automatica Sinica, 2012, 38(4): 618−631
[14] Thomas C, Busch F, Kuhlenkoetter B, Deuse J. Enabling Manufacturing Competitiveness and Economic Sustainability. Berlin Heidelberg: Springer-Verlag, 2012. 464−470
[15] Nokata M, Ikuta K, Ishii H. Safety-optimizing method of human-care robot design and control. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation. Washington DC, USA: IEEE, 2002. 2: 1991−1996
[16] Lu Y, Zeng L, Bone G M. Multisensor system for safer human-robot interaction. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Orlando, FL, USA: IEEE, 2005. 1767−1772
[17] Kulić D, Croft E A. Real-time safety for human-robot interaction. Robotics and Autonomous Systems, 2016, 54(1): 1−12
[18] Gombolay M C, Gutierrez R A, Clarke S G, Sturla G F, Shah J A. Decision-making authority, team efficiency and human worker satisfaction in mixed human-robot teams. Autonomous Robots, 2015, 39(3): 293−312 doi: 10.1007/s10514-015-9457-9
[19] Kim Y C, Yoon W C, Kwon H T, Yoon Y S, Kim H J. A cognitive approach to enhancing human-robot interaction for service robots. In: Proceedings of Symposium on Human Interface and the Management of Information. Berlin Heidelberg: Springer-Verlag, 2007. 858−867
[20] Rosenfeld A, Agmon N, Maksimov O, Kraus S. Intelligent agent supporting human-multi-robot team collaboration. Artificial Intelligence, 2017, 252: 211−231 doi: 10.1016/j.artint.2017.08.005