[1] Dong C, Chen C L, He K M, Tang X O. Image super-resolution using using deep convolutional networks. IEEE Transactions on Pattern & Machine Intelligence, 2016, 38(2): 295-307 http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201709007
[2] 胡长胜, 詹曙, 吴从中.基于深度特征学习的图像超分辨率重建.自动化学报, 2017, 43(5): 814-821 doi: 10.16383/j.aas.2017.c150634

Hu Chang-Sheng, Zhan Shu, Wu Cong-Zhong. Image super-resolution reconstruction based on deep feature learning. Acta Automatica Sinica, 2017, 43(5): 814-821 doi: 10.16383/j.aas.2017.c150634
[3] Sun X, Li X G, Li J F, Zhuo L. Review on deep learning based image super-resolution restoration algorithms. Acta Automatica Sinica, 2017, 43(5): 697-709
[4] 李滔, 何小海, 卿粼波, 滕奇志.基于自适应块组割先验的噪声图像超分辨率重建.自动化学报, 2017, 43(5): 765-777 doi: 10.16383/j.aas.2017.c160268

Li Tao, He Xiao-Hai, Qing Lin-Bo, Teng Qi-Zhi. Noisy image super-resolution reconstruction with adaptive patch-group-cuts prior. Acta Automatica Sinica, 2017, 43(5): 765-777 doi: 10.16383/j.aas.2017.c160268
[5] Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, 2016, 1646-1654
[6] Ledig C, Theis L, Huszár F, Caballero J, Cunn A, Acosta A, et al. Photo-realistic single image superresolution using a generative adversarial network, arXiv preprint, arXiv: 1609.04802, 2016
[7] Lim B, Son S, Kim H, Nah S, MuLee K. Enhanced deep residual networks for single image super-resolution. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA: IEEE, July 2017, 1132-1140 http://www.researchgate.net/publication/318337451_Enhanced_Deep_Residual_Networks_for_Single_Image_Super-Resolution
[8] Sajjadi M S, Scholkopf B, Hirsch M. Enhancenet: single image super-resolution through automated texture synthesis, arXiv preprint, arXiv: 1612.07919, 2016
[9] Bengio Y, Louradour J, Collobert R, Weston J. Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning. Montreal Quebec, Canada: ACM, 2009
[10] Graves A, Bellemare G, Menick J, Munos R, Kavukcuoglu K. Automated curriculum learning for neural networks. arXiv preprint arXiv: 1704.03003, 2017
[11] Hochreiter, Sepp, Jürgen Schmidhuber. LSTM can solve hard long time lag problems. Advances in Neural Information Processing Systems. 1997
[12] Haralick R M, Shanmugam K. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 1973, (6): 610-621 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_16d3aac51c12c1b20a2512bd82d7cd5e
[13] Rodriguez A, Laio A. Clustering by fast search and find of density peaks. Science, 2014, 344(6191): 1492 doi: 10.1126/science.1242072
[14] Kim J, Lee J K, Lee K M. Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, 2016, 1637-1645
[15] Timofte R, Agustsson E, Gool L V, Yang Ming-Hsuan, Zhang L, Lim B, et al. Ntire 2017 challenge on single image super-resolution: Methods and results. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA: IEEE, 2017
[16] Bevilacqua M, Roumy A, Guillemot C. Low-complexity singleimage super-resolution based on nonnegative neighbor embedding. In: Proceedings of the 2012 British Machine Vision Conference, Surrey, UK: 2012, 135.1-135.10
[17] Zeyde R, Elad M, Protter M. On single image scale-up using sparse-representations. In: Proceedings of the 2010 International conference on curves and surfaces. Avignon, France: Springer, 2010, 711-730 http://www.springerlink.com/content/56276x8370377023/
[18] Martin D, Fowlkes C, Tal D. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th IEEE International Conference on Computer Vision, 2001, 2(11): 416-423 http://www.researchgate.net/publication/3906161_A_database_of_human_segmented_natural_images_and_its_application_toevaluating_segmentation_algorithms_and_measuring_ecological_statistics
[19] Huang J B, Singh A, Ahuja N. Single image super-resolution from transformed self-exemplars. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, Massachusetts, USA: 2015, 5197-5206 http://www.researchgate.net/publication/275523282_Single_Image_Super-resolution_from_Transformed_Self-Exemplars
[20] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Zhi-Feng, Citro C, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint, arXiv: 1603.04467, 2016
[21] Bezdek J C, Ehrlich R, Full W. FCM: the fuzzy c-means clustering algorithm. Computers & Geosciences, 1984, 10(2-3): 191-203 http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201012036
[22] Zhang T, Raghu R, Miron L. BIRCH: an efficient data clustering method for very large databases. ACM Sigmod Record. 25(2): ACM, 1996
[23] Fraley C, Raftery A E. MCLUST: Software for model-based cluster analysis. Journal of Classification, 1999, 16(2): 297-306 doi: 10.1007/s003579900058
[24] Wang W, Jiong Y, Richard M. STING: A statistical information grid approach to spatial data mining. VLDB. Athens, Greece, Vol. 97, 1997: 186-195
[25] Timofte R, Smet V D, Gool L V. A +: Adjusted anchored neighborhood regression for fast super-resolution. In: Proceedings of the 2014 Asian Conference on Computer Vision (ACCV). Singapore: Springer, 2014, 111-126