[1] Xu L, Wang L Y, Yin G, Zhang H. Communication information structures and contents for enhanced safety of highway vehicle platoons. IEEE Transactions on Vehicular Technology, 2014, 63(9): 4206-4220 doi: 10.1109/TVT.2014.2311384
[2] Farokhi F, Johansson K H. A game-theoretic framework for studying truck platooning incentives. In: Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems. Hague, Netherlands: IEEE, 2013. 1253-1260
[3] Liang K Y, Martensson J, Johansson K H. When is it fuel efficient for a heavy duty vehicle to catch up with a platoon? International Federation of Automatic Control Proceedings Volumes, 2013, 46(21): 738-743
[4] Xiao L, Gao F. Practical string stability of platoon of adaptive cruise control vehicles. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1184-1194 doi: 10.1109/TITS.2011.2143407
[5] Seiler P, Pant A, Hedrick K. Disturbance propagation in vehicle strings. IEEE Transactions on Automatic Control, 2004, 49(10): 1835-1842 doi: 10.1109/TAC.2004.835586
[6] Kato S, Tsugawa S, Tokuda K. Vehicle control algorithms for cooperative driving with automated vehicles and intervehicle communications. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(3): 155-161 doi: 10.1109/TITS.2002.802929
[7] Gowal S, Falconi R, Martinoli A. Local graph-based distributed control for safe highway platooning. In: Proceedings of the 2010 IEEE International Conference on Intelligent Robots and Systems. Taiwan, China: IEEE, 2010. 6070-6076
[8] Falconi R, Gowal S, Martinoli A. Graph based distributed control of non-holonomic vehicles endowed with local positioning information engaged in escorting missions. In: Proceedings of the 2010 IEEE International Conference on Intelligent Robots and Systems. Taiwan, China: IEEE, 2010. 3207-3214
[9] Marjovi A, Vasic M, Lemaitre J, Martinoli A. Distributed graph-based convoy control for networked intelligent vehicles. In: Proceedings of the 2015 IEEE Intelligent Vehicles Symposium. Seoul, South Korea: IEEE, 2015. 138-143
[10] Qian X, De La Fortelle A, Moutarde F. A hierarchical model predictive control framework for on-road formation control of autonomous vehicles. In: Proceedings of the 2016 IEEE Intelligent Vehicles Symposium. Gotenburg, Sweden: IEEE, 2016. 376-381
[11] Navarro I, Zimmermann F, Vasic M, Martinoli A. Distributed graph-based control of convoys of heterogeneous vehicles using curvilinear road coordinates. In: Proceedings of the 19th International Conference on Intelligent Transportation Systems. Rio de Janeiro, Brazil: IEEE, 2016. 879-886
[12] Bounini F, Gingras D, Pollart H, Gruyer D. Modified artificial potential field method for online path planning applications. In: Proceedings of the the 2017 IEEE Intelligent Vehicles Symposium. California, USA: IEEE, 2017. 180-185
[13] Gautam R, Kala R. Motion planning for a chain of mobile robots using A* and potential field. Robotics, 2018, 7(2): 20-21 doi: 10.3390/robotics7020020
[14] Huang Z, Chu D, Wu C, He Y. Path planning and cooperative control for automated vehicle platoon using hybrid automata. IEEE Transactions on Intelligent Transportation Systems, 2018, 1(99): 1-16
[15] Mesbahi M, Egerstedt M. Graph Theoretic Methods in Multiagent Networks. New Jersey: Princeton University Press, 2010.
[16] Linderoth M, Soltesz K, Murray R M. Nonlinear lateral control strategy for nonholonomic vehicles. In: Proceedings of the the 2008 American Control Conference. Washington, USA: IEEE, 2008. 3219-3224