[1] 李帅鑫. 激光雷达/相机组合的3D SLAM技术研究 [硕士学位论文], 战略支援部队信息工程大学, 中国, 2018

Li Shuai-Xin. Research on 3D SLAM Based on Lidar/Camera Coupled System [Master thesis], PLA Strategic Support Force Information Engineering University, China, 2018
[2] Besl P J, McKay N D. Method for registration of 3-D shapes. In: Proceedings Volume 1611, Sensor Fusion IV: Control Paradigms and Data Structures. Boston, MA, USA: SPIE, 1992. 586−606
[3] Pomerleau F, Colas F, Siegwart R, Magnenat S. Comparing ICP variants on real-world data sets. Autonomous Robots, 2013, 34(3): 133−148 doi: 10.1007/s10514-013-9327-2
[4] Surmann H, Nűchter A, Lingemann K, Hertzberg J. 6D SLAM-preliminary report on closing the loop in six dimensions. IFAC Proceedings Volumes, 2004, 37(8): 197−202 doi: 10.1016/S1474-6670(17)31975-4
[5] Moosmann F, Stiller C. Velodyne SLAM. In: Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV). Baden-Baden, Germany: IEEE, 2011. 393−398
[6] Droeschel D, Schwarz M, Behnke S. Continuous mapping and localization for autonomous navigation in rough terrain using a 3D laser scanner. Robotics and Autonomous Systems, 2017, 88: 104−115 doi: 10.1016/j.robot.2016.10.017
[7] Droeschel D, Behnke S. Efficient continuous-time SLAM for 3D lidar-based online mapping. In: Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD, Australia: IEEE, 2018. 5000−5007
[8] Zhang J, Singh S. LOAM: Lidar odometry and mapping in real-time. In: Proceedings of Robotics: Science and Systems. Berkeley, CA, USA: 2014.
[9] Zhang J, Singh S. Low-drift and real-time lidar odometry and mapping. Autonomous Robots, 2017, 41(2): 401−416 doi: 10.1007/s10514-016-9548-2
[10] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012. 3354−3361
[11] Shan T X, Englot B. LeGO-LOAM: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In: Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018. 4758−4765
[12] Hess W, Kohler D, Rapp H, Andor D. Real-time loop closure in 2D LIDAR SLAM. In: Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden: IEEE, 2016. 1271−1278
[13] Forster C, Carlone L, Dellaert F, Scaramuzza D. On-manifold preintegration for real-time visual-inertial odometry. IEEE Transactions on Robotics, 2017, 33(1): 1−21 doi: 10.1109/TRO.2016.2597321
[14] Sarvrood Y B, Hosseinyalamdary S, Gao Y. Visual-LiDAR odometry aided by reduced IMU. ISPRS International Journal of Geo-Information, 2016, 5(1): 3 doi: 10.3390/ijgi5010003
[15] Thrun S, Burgard W, Fox D. Probabilistic Robotics. Cambridge, MA: MIT Press, 2005.
[16] Hening S, Ippolito C A, Krishnakumar K S, Stepanyan V, Teodorescu M. 3D LIDAR SLAM integration with GPS/INS for UAVs in urban GPS-degraded environments. In: AIAA Information Systems-AIAA Infotech@Aerospace. Grapevine, Texas: AIAA, 2017.
[17] Dellaert F, Kaess M. Factor graphs for robot perception. Foundations and Trends® in Robotics, 2017, 6(1-2): 1−139
[18] Leutenegger S, Lynen S, Bosse M, Siegwart R, Furgale P. Keyframe-based visual-inertial odometry using nonlinear optimization. The International Journal of Robotics Research, 2015, 34(3): 314−334 doi: 10.1177/0278364914554813
[19] Konolige K, Grisetti G, Kűmmerle R, Burgard W, Limketkai B, Vincent R. Efficient sparse pose adjustment for 2D mapping. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010. 22−29
[20] Kaess M, Ranganathan A, Dellaert F. ISAM: Incremental smoothing and mapping. IEEE Transactions on Robotics, 2008, 24(6): 1365−1378 doi: 10.1109/TRO.2008.2006706
[21] Indelman V, Williams S, Kaess M, Dellaert F. Factor graph based incremental smoothing in inertial navigation systems. In: Proceedings of the 15th International Conference on Information Fusion. Singapore: IEEE, 2012. 2154-2161
[22] Kaess M, Johannsson H, Roberts R, Ila V, Leonard J J, Dellaert F. iSAM2: Incremental smoothing and mapping using the Bayes tree. The International Journal of Robotics Research, 2012, 31(2): 216−235 doi: 10.1177/0278364911430419
[23] Qin T, Li P L, Shen S J. VINS-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Transactions on Robotics, 2018, 34(4): 1004−1020 doi: 10.1109/TRO.2018.2853729
[24] Qin T, Shen S J. Online temporal calibration for monocular visual-inertial systems. In: Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018. 3662−3669
[25] Li S X, Li G Y, Zhou Y L, Wang L, Fu J Y. Real-time dead reckoning and mapping approach based on three-dimensional point cloud. In: proceedings of the 2018 China Satellite Navigation Conference. Harbin, China: Springer, 2018. 643−662
[26] Barfoot T D. State Estimation for Robotics. Cambridge: Cambridge University Press, 2017.
[27] Zhang J, Singh S. Laser-visual-inertial odometry and mapping with high robustness and low drift. Journal of Field Robotics, 2018, 35(8): 1242−1264 doi: 10.1002/rob.21809
[28] Behley J, Stachniss C. Efficient surfel-based SLAM using 3D laser range data in urban environments. In: Proceedings of Robotics: Science and Systems. Pittsburgh, Pennsylvania, 2018.