[1] Hinton G E. To recognize shapes, first learn to generate images. Progress in Brain Research, 2007, 165:535-547 doi: 10.1016/S0079-6123(06)65034-6
[2] Taylor G W, Hinton G E, Roweis S. Modeling human motion using binary latent variables. In: Proceedings of the 19th International Conference on Neural Information Processing Systems. Canada: MIT Press, 2006. 1345-1352
[3] Taylor G W, Hinton G E. Factored conditional restricted Boltzmann machines for modeling motion style. In: Proceedings of the 26th Annual International Conference on Machine Learning. Montreal, Quebec, Canada: ACM, 2009. 1025-1032
[4] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786):504-507 doi: 10.1126/science.1127647
[5] Mohamed A, Dahl G E, Hinton G. Acoustic modeling using deep belief networks. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1):14-22 doi: 10.1109/TASL.2011.2109382
[6] Hinton G, Deng L, Yu D, Dahl G E, Mohamed A R, Jaitly N, et al. Deep neural networks for acoustic modeling in speech recognition:the shared views of four research groups. IEEE Signal Processing Magazine, 2012, 29(6):82-97 doi: 10.1109/MSP.2012.2205597
[7] Liu Y, Zhou S S, Chen Q C. Discriminative deep belief networks for visual data classification. Pattern Recognition, 2011, 44(10-11):2287-2296 doi: 10.1016/j.patcog.2010.12.012
[8] Le Cun Y, Boser B, Denker J S, Howard R E, Habbard W, Jackel L D, et al. Handwritten digit recognition with a back-propagation network. In: Proceedings of Advances in Neural Information Processing Systems. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990. 396-404
[9] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2014. 2672-2680
[10] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. In: Proceedings of the 4th International Conference on Learning Representations. Caribe Hilton, San Juan, Puerto Rico, 2016. 97-108
[11] Xue T F, Wu J J, Bouman K L, Freeman W T. Visual dynamics: probabilistic future frame synthesis via cross convolutional networks. In: Proceedings of Advances in Neural Information Processing Systems. Barcelona, Spain: Curran Associates, Inc., 2016. 91-99
[12] Denton E L, Chintala S, Szlam A, Fergus R. Deep generative image models using a Laplacian pyramid of adversarial networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2015. 1486-1494
[13] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In: Proceedings of Advances in Neural Information Processing Systems. Lake Tahoe, Nevada, USA: Curran Associates, Inc., 2012. 1097-1105
[14] Liu M Y, Tuzel O. Coupled generative adversarial networks. In: Proceedings of Advances in Neural Information Processing Systems. Barcelona, Spain: Curran Associates, Inc., 2016. 469-477
[15] Mirza M, Osindero S. Conditional generative adversarial nets. arXiv: 1411. 1784, 2014
[16] van den Oord A, Kalchbrenner N, Espeholt L, Kavukcuoglu K, Vinyals O, Graves A. Conditional image generation with PixelCNN decoders. In: Proceedings of Advances in Neural Information Processing Systems. Barcelona, Spain: Curran Associates, Inc., 2016. 4790-4798
[17] Reed S, Akata Z, Mohan S, Tenka S, Schiele B, Lee H. Learning what and where to draw. In: Proceedings of Advances in Neural Information Processing Systems. Barcelona, Spain: Curran Associates, Inc., 2016. 217-225
[18] Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X, et al. Improved techniques for training GANs. In: Proceedings of Advances in Neural Information Processing Systems. Barcelona, Spain: Curran Associates, Inc., 2016. 2226-2234
[19] Chen X, Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, et al. InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Proceedings of Advances in Neural Information Processing Systems. Barcelona, Spain: Curran Associates, Inc., 2016. 2172-2180
[20] Odena A, Olah C, Shlens J. Conditional image synthesis with auxiliary classifier GANs. In: Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia, 2017. 2642-2651
[21] Ghosh A, Kulharia V, Namboodiri V, Torr P H S, Dokania P K. Multi-agent diverse generative adversarial networks. arXiv: 1704. 02906, 2017
[22] Arjovsky M, Bottou L. Towards principled methods for training generative adversarial networks. arXiv: 1701. 04862, 2017
[23] LeCun Y, Cortes C, Burges C J C. The MNIST database of handwritten digits[Online], available: http://yann.lecun.com/exdb/mnist, June 3, 2017.
[24] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11):2278-2324 doi: 10.1109/5.726791
[25] Liu Z W, Luo P, Wang X G, Tang X O. Large-scale CelebFaces Attributes (CelebA) Dataset[Online], available: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html, July 20, 2017.
[26] Liu Z W, Luo P, Wang X G, Tang X O. Deep learning face attributes in the wild. In: Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015. 3730-3738
[27] Princeton ModelNet[Online], available: http://modelnet.cs.princeton.edu, August 13, 2017.
[28] Wu Z R, Song S R, Khosla A, Yu F, Zhang L G, Tang X O, et al. 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015. 1912-1920
[29] Wu J J, Zhang C K, Xue T F, Freeman B, Tenenbaum J. Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: Proceedings of Advances in Neural Information Processing Systems. Barcelona, Spain: Curran Associates, Inc., 2016. 82-90