[1] Sarikaya R, Hinton G E, Deoras A. Application of deep belief networks for natural language understanding. IEEE/ACM Transactions on Audio, Speech, & Language Processing, 2014, 22(4): 778-784
[2] Graves A, Mohamed A R, Hinton G. Speech recognition with deep recurrent neural networks. In: Proceedings of the 38th IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, BC: IEEE, 2013. 6645-6649
[3] 刘建伟, 刘媛, 罗雄麟. 深度学习研究进展. 计算机应用研究, 2014, 31(7): 1921-1930

Liu Jian-Wei, Liu Yuan, Luo Xiong-Lin. Research and development on deep learning. Application Research of Computers, 2014, 31(7): 1921-1930
[4] Najafabadi M M, Villanustre F, Khoshgoftaar T M, Seliya N, Wald R, Muharemagic E. Deep learning applications and challenges in big data analytics. Journal of Big Data, 2015, 2: 1
[5] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278-2324
[6] LeCun Y, Boser B, Denker J S, Henderson D, Howard R E, Hubbard W, Jackel L D. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 1(4): 541-551
[7] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 25. Lake Tahoe, Nevada, USA: Curran Associates, Inc., 2012. 2012-2020
[8] 王欣, 唐俊, 王年. 基于双层卷积神经网络的步态识别算法. 安徽大学学报(自然科学版), 2015, 39(1): 32-36

Wang Xin, Tang Jun, Wang Nian. Gait recognition based on double-layer convolutional neural networks. Journal of Anhui University (Natural Science Edition), 2015, 39(1): 32-36
[9] Ouyang W, Wang X. Joint deep learning for pedestrian detection. In: Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013. 2056-2063
[10] Ji S W, Xu W, Yang M, Yu K. 3D convolutional neural networks for human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 221-231
[11] 徐姗姗, 刘应安, 徐昇. 基于卷积神经网络的木材缺陷识别. 山东大学学报(工学版), 2013, 43(2): 23-28

Xu Shan-Shan, Liu Ying-An, Xu Sheng. Wood defects recognition based on the convolutional neural network. Journal of Shandong University (Engineering Science), 2013, 43(2): 23-28
[12] 贾世杰, 杨东坡, 刘金环. 基于卷积神经网络的商品图像精细分类. 山东科技大学学报(自然科学版), 2014, 33(6): 91-96

Jia Shi-Jie, Yang Dong-Po, Liu Jin-Huan. Product image fine-grained classification based on convolutional neural network. Journal of Shandong University of Science and Technology (Natural Science), 2014, 33(6): 91-96
[13] Unuma H, Hasegawa H. Visual attention and object perception: levels of visual features and perceptual representation. Journal of Kawamura Gakuen Womans University, 2007, 18: 47-60
[14] Serre T, Wolf L, Poggio T. Object recognition with features inspired by visual cortex. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). San Diego, CA: IEEE, 2005. 994-1000
[15] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1998, 20(11): 1254-1259
[16] 姚原青, 李峰, 周书仁. 基于颜色——纹理特征的目标跟踪. 计算机工程与科学, 2014, 36(8): 1581-1587

Yao Yuan-Qing, Li Feng, Zhou Shu-Ren. Target tracking based on color and the texture feature. Computer Engineering & Science, 2014, 36(8): 1581-1587
[17] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-44
[18] Huang F J, LeCun Y. Large-scale learning with SVM and convolutional for generic object categorization. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision & Pattern Recognition. New York, USA: IEEE, 2006. 284-291
[19] Scherer D, Müller A, Behnke S. Evaluation of pooling operations in convolutional architectures for object recognition. In: Proceedings of the 20th International Conference on Artificial Neural Networks. Thessaloniki, Greece: Springer, 2010. 92-101
[20] Serences J T, Yantis S. Selective visual attention and perceptual coherence. Trends in Cognitive Sciences, 2006, 10(1): 38-45
[21] 黎万义, 王鹏, 乔红. 引入视觉注意机制的目标跟踪方法综述. 自动化学报, 2014, 40(4): 561-576

Li Wan-Yi, Wang Peng, Qiao Hong. A survey of visual attention based methods for object tracking. Acta Automatica Siinica, 2014, 40(4): 561-576
[22] Maljkovic V, Nakayama K. Priming of pop-out: I. role of features. Memory & Cognition, 1994, 22(6): 657-672
[23] Roos M J, Wolmetz M, Chevillet M A. A hierarchical model of vision (HMAX) can also recognize speech. BMC Neuroscience, 2014, 15(Suppl 1): 187
[24] Li P H, Chaumette F. Image cues fusion for object tracking based on particle filter. In: Proceedings of the 3rd International Workshop on Articulated Motion and Deformable Objects. Palma de Mallorca, Spain: Springer, 2004. 99-110
[25] Wang X, Tang Z M. Modified particle filter-based infrared pedestrian tracking. Infrared Physics & Technology, 2010, 53(4): 280-287
[26] 朱庆生, 张敏, 柳锋. 基于HMAX特征的层次式柑桔溃疡病识别方法. 计算机科学, 2008, 35(4): 231-232

Zhu Qing-Sheng, Zhang Min, Liu Feng. Hierarchical citrus canker recognition based on HMAX features. Computer Science, 2008, 35(4): 231-232
[27] 汤毓婧. 基于人脑视觉感知机理的分类与识别研究[硕士学位论文], 南京理工大学, 中国, 2009.

Tang Yu-Jing. Classification and Recognition Research based on Human Visual Perception Mechanism[Master dissertation], Nanjing University of Science and Technology, China, 2009.
[28] Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y. Locality-constrained linear coding for image classification. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA: IEEE, 2010. 3360-3367
[29] 张小利, 李雄飞, 李军. 融合图像质量评价指标的相关性分析及性能评估. 自动化学报, 2014, 40(2): 306-315

Zhang Xiao-Li, Li Xiong-Fei, Li Jun. Validation and correlation analysis of metrics for evaluating performance of image fusion. Acta Automatica Sinica, 2014, 40(2): 306-315
[30] 杨波, 敬忠良. 梅花形采样离散小波框架图像融合算法. 自动化学报, 2010, 36(1): 12-22

Yang Bo, Jing Zhong-Liang. Image fusion algorithm based on the quincunx-sampled discrete wavelet frame. Acta Automatica Sinica, 2010, 36(1): 12-22