[1] Saridis G N. Analytic formulation of the principle of increasing precision with decreasing intelligence for intelligent machines. Automatica, 1989, 25(3): 461-467
[2] Cai Zi-Xing. Intelligent Control Principles and Applications. Beijing: Tsinghua University Press, 2007(蔡自兴. 智能控制原理与应用. 北京: 清华大学出版社, 2007)
[3] Antsaklis P J. Intelligent control. Encyclopedia of Electrical and Electronics Engineering. New York: John Wiley & Sons, 1997
[4] Yi Ji-Kai, Hou Yuan-Bin. Intelligent Control. Beijing: Beijing University of Technology Press, 1999(易继锴, 侯媛彬. 智能控制技术. 北京: 北京工业大学出版社, 1999)
[5] Wang Yao-Nan. Intelligent Control System. Changsha: Hunan University Press, 2006(王耀南. 智能控制系统. 长沙: 湖南大学出版社, 2006)
[6] Sun Zeng-Qi, Deng Zhi-Dong, Zhang Zai-Xing. Intelligent Control Theory and Technology. Beijing: Tsinghua University Press, 2011(孙增圻, 邓志东, 张再兴. 智能控制理论与技术. 北京: 清华大学出版社, 2011)
[7] Linkens D A, Nyongesa H O. Learning systems in intelligent control: an appraisal of fuzzy, neural and genetic algorithm control applications. IEE Proceedings—— Control Theory and Applications, 1996, 143(4): 367-386
[8] Leondes C T, Mendel J M. Artificial intelligent control. Technical Report 4336, McDonnell-Douglas Astronautics Corporation, USA, 1967
[9] Fu K S. Learning control systems and intelligent control systems: an intersection of artificial intelligence and automatic control. IEEE Transactions on Automatic Control, 1971, 16(1): 70-72
[10] Wang L X, Mendel J M. Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Transactions on Neural Networks, 1992, 3(5): 807-814
[11] Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Networks, 1989, 2(5): 359-366
[12] Zheng Nan-Ning, Jia Xin-Chun, Yuan Ze-Jian. A survey of control science and technology. Acta Automatica Sinica, 2002, 28(S1): 7-17(郑南宁, 贾新春, 袁泽剑. 控制科学与技术的发展及其思考. 自动化学报, 2002, 28(S1): 7-17)
[13] Huang Lin. Future development in control science: why, what and strategy. Acta Automatica Sinica, 2013, 39(2): 97-100(黄琳. 为什么做, 做什么和发展战略——控制科学学科发展战略研讨会约稿前言. 自动化学报, 2013, 39(2): 97-100)
[14] Zheng Da-Zhong. Development of control science and its revelation. Studies in Dialectics of Nature, 1986, 2(6): 57-62(郑大钟. 控制科学的发展及其启示. 自然辩证法研究, 1986, 2(6): 57-62)
[15] Huang Lin, Peng Zhong-Xing, Wang Jin-Zhi. Control science: inspired by applications. Science & Technology Review, 2011, 29(17): 72-79(黄琳, 彭中兴, 王金枝. 控制科学——与需俱进的科学. 科技导报, 2011, 29(17): 72-79)
[16] Coello C A C. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 2002, 191(11-12): 1245-1287
[17] Wang Ling, Liu Bo. Particle Swarm Optimization and Scheduling Algorithms. Beijing: Tsinghua University Press, 2008(王凌, 刘波. 微粒群优化与调度算法. 北京: 清华大学出版社, 2008)
[18] Yan Ai-Jun, Chai Tian-You, Yue Heng. Multivariable intelligent optimizing control approach for shaft furnace roasting process. Acta Automatica Sinica, 2006, 32(4): 636-640(严爱军, 柴天佑, 岳恒. 竖炉焙烧过程的多变量智能优化控制. 自动化学报, 2006, 32(4): 636-640)
[19] Huang Yin-Rong, Zhang Shao-De. Dissolved oxygen intelligent optimization control system in the aeration tank of wastewater treatment. Information and Control, 2011, 40(3): 393-400(黄银蓉, 张绍德. 污水处理曝气池溶解氧智能优化控制系统. 信息与控制, 2011, 40(3): 393-400)
[20] Bai Rui, Tong Shao-Cheng, Chai Tian-You. Intelligent optimal control of the raw slurry producing process in the alumina production. Control and Decision, 2013, 28(4): 525-530(白锐, 佟绍成, 柴天佑. 氧化铝生料浆制备过程的智能优化控制方法. 控制与决策, 2013, 28(4): 525-530)
[21] Xu Chen-Hua, Wu Min. Intelligent integrated optimization control of quality and quantity for lead-zinc sintering process. Control Theory & Applications, 2008, 25(4): 688-692(徐辰华, 吴敏. 铅锌烧结过程质量产量的智能集成优化控制. 控制理论与应用, 2008, 25(4): 688-692)
[22] Mo Ju-Hua, Huang Min, Wang Xing-Wei. Application of a pull strategy based on fuzzy control for production control of assembly line. Acta Automatica Sinica, 2011, 37(1): 118-123(莫巨华, 黄敏, 王兴伟. 基于模糊控制的拉式策略在装配生产控制中的应用. 自动化学报, 2011, 37(1): 118-123)
[23] Tian Yi, Zhang Xin, Zhang Liang, Zhang Xin. Fuzzy control strategy for hybrid electric vehicle based on neural network identification of driving conditions. Control Theory & Applications, 2011, 28(3): 363-369(田毅, 张欣, 张良, 张昕. 神经网络工况识别的混合动力电动汽车模糊控制策略. 控制理论与应用, 2011, 28(3): 363-369)
[24] He Jin-Bao, Guo Shuai, He Yong-Yi, Fang Ming-Lun. A fuzzy tension-controller based on genetic algorithm. Control Theory & Applications, 2009, 26(3): 243-248(何金保, 郭帅, 何永义, 方明伦. 基于遗传优化的张力模糊控制. 控制理论与应用, 2009, 26(3): 243-248)
[25] Duan Ping, Zhang Jian-Chang, Ding Cheng-Jun, Zhang Ming-Lu. The fuzzy genetic algorithm for the mobile robot's wall tracking control. Control Theory & Applications, 2006, 23(3): 416-420(段萍, 张建畅, 丁承君, 张明路. 基于模糊遗传算法的移动机器人墙跟踪控制策略. 控制理论与应用, 2006, 23(3): 416-420)
[26] Hu Yue-Ming, Qi Hao-Feng, Wang Jian. The application of genetic algorithm based P-F-PI controller in position control of robotic manipulator. Control Theory & Applications, 2000, 17(5): 716-720(胡跃明, 戚浩峰, 王建. 基于遗传算法的P-F-PI控制器在机器人手臂定位控制中的应用. 控制理论与应用, 2000, 17(5): 716-720)
[27] Pal T, Pal N R. SOGARG: a self-organized genetic algorithm-based rule generation scheme for fuzzy controllers. IEEE Transactions on Evolutionary Computation, 2003, 7(4): 397-415
[28] Martínez R, Castillo O, Aguilar L T. Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Information Sciences, 2009, 179(13): 2158-2174
[29] Cheng R G, Chang C J. Design of a fuzzy traffic controller for ATM networks. IEEE-ACM Transactions on Networking, 1996, 4(3): 460-469
[30] Alcalá R, Casillas J, Cordón O, González A, Herrera F. A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems. Engineering Applications of Artificial Intelligence, 2005, 18(3): 279-296
[31] Chang W, Park J B, Joo Y H. GA-based intelligent digital redesign of fuzzy-model-based controllers. IEEE Transactions on Fuzzy Systems, 2003, 11(1): 35-44
[32] Castillo O, Valdez F, Melin P. Hierarchical genetic algorithms for topology optimization in fuzzy control systems. International Journal of General Systems, 2007, 36(5): 575-591
[33] Montazeri-Gh M, Safari A. Tuning of fuzzy fuel controller for aero-engine thrust regulation and safety considerations using genetic algorithm. Aerospace Science and Technology, 2011, 15(3): 183-192
[34] Kharrati H, Khanmohammadi S, Zeiaee A, Navarbaf A, Alizadeh G. Design of optimized fuzzy model-based controller for nonlinear systems using hybrid intelligent strategies. Proceedings of the Institution of Mechanical Engineers, Part I—— Journal of Systems and Control Engineering, 2012, 226(19): 1152-1165
[35] Bezine H, Derbel N, Alimi A M. Fuzzy control of robot manipulators: some issues on design and rule base size reduction. Engineering Applications of Artificial Intelligence, 2002, 15(5): 401-416
[36] Jain R, Sivakumaran N, Radhakrishnan T K. Design of self tuning fuzzy controllers for nonlinear systems. Expert Systems with Applications, 2011, 38(4): 4466-4476
[37] Ding Yong-Sheng, Ren Li-Hong, Shao Shi-Huang. Automatic design of Takagi-Sugeno fuzzy controllers by a new DNA-based evolutionary algorithm. Acta Automatica Sinica, 2001, 27(4): 510-520 (丁永生, 任立红, 邵世煌. 采用新的DNA进化算法自动设计Takagi-Sugeno模糊控制器.自动化学报, 2001, 27(4): 510-520)
[38] Tsakonas A. Local and global optimization for Takagi-Sugeno fuzzy system by memetic genetic programming. Expert Systems with Applications, 2013, 40(8): 3282-3298
[39] Chen Jie, Pan Feng, Cai Tao. Acceleration factor harmonious particle swarm optimizer. International Journal of Automation and Computing, 2006, 3(1): 41-46
[40] Hao Wan-Jun, Qiang Wen-Yi, Chai Qing-Xuan, Hu Lin-Xian. Design of fuzzy controller based on particle swarm optimization. Control and Decision, 2007, 22(5): 585-588(郝万君, 强文义, 柴庆宣, 胡林献. 基于粒子群优化的一类模糊控制器设计. 控制与决策, 2007, 22(5): 585-588)
[41] Castillo O, Martínez-Marroquín R, Melin P, Valdez F, Soria J. Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Information Sciences, 2012, 192: 19-38
[42] Khooban M H, Soltanpour M R. Swarm optimization tuned fuzzy sliding mode control design for a class of nonlinear systems in presence of uncertainties. Journal of Intelligent & Fuzzy Systems, 2013, 24(2): 383-394
[43] Pan I, Korre A, Das S, Durucan S. Chaos suppression in a fractional order financial system using intelligent regrouping PSO based fractional fuzzy control policy in the presence of fractional Gaussian noise. Nonlinear Dynamics, 2012, 70(4): 2445-2461
[44] Jiang H M, Kwong C K, Chen Z Q, Ysim Y C. Chaos particle swarm optimization and T-S fuzzy modeling approaches to constrained predictive control. Expert Systems with Applications, 2012, 39(1): 194-201
[45] Lu X J, Li H X, Yuan X. PSO-based intelligent integration of design and control for one kind of curing process. Journal of Process Control, 2010, 20(10): 1116-1125
[46] Feng H M, Chen C Y, Horng J H. Intelligent omni-directional vision-based mobile robot fuzzy systems design and implementation. Expert Systems with Applications, 2010, 37(5): 4009-4019
[47] Yao X. Evolving artificial neural networks. Proceedings of the IEEE, 1999, 87(9): 1423-1447
[48] Li Min-Yuan, Du Yan-Li. Composite neural networks adaptive control system of temperature based on GA learning. Control Theory & Applications, 2004, 21(2): 242-246(李敏远, 都延丽. 基于遗传算法学习的复合神经网络自适应温度控制系统. 控制理论与应用, 2004, 21(2): 242-246)
[49] Reil T, Husbands P. Evolution of central pattern generators for bipedal walking in a real-time physics environment. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 159-168
[50] Hung S L, Adeli H. A parallel genetic neural network learning algorithm for MIMD shared-memory machines. IEEE Transactions on Neural Networks, 1994, 5(6): 900-909
[51] Song Ying, Chen Zeng-Qiang, Yuan Zhu-Zhi. A nonlinear predictive controller based on chaos optimization. Control Theory & Applications, 2007, 24(4): 561-564(宋莹, 陈增强, 袁著祉. 基于混沌优化的非线性预测控制器. 控制理论与应用, 2007, 24(4): 561-564)
[52] Becerikli Y, Konar A F, Samad T. Intelligent optimal control with dynamic neural networks. Neural Networks, 2003, 16(2): 251-259
[53] Kosmatopoulos E B, Kouvelas A. Large scale nonlinear control system fine-tuning through learning. IEEE Transactions on Neural Networks, 2009, 20(6): 1009-1023
[54] Liu Xiang-Jie, Zhou Xiao-Xin, Chai Tian-You. Status and development of fuzzy control. Information and Control, 1999, 28(4): 283-292(刘向杰, 周孝信, 柴天佑. 模糊控制研究的现状与新发展. 信息与控制, 1999, 28(4): 283-292)
[55] Li Xiang-Fei, Zou En, Zhang Tai-Shan. Optimization design of fuzzy neural networks controller parameter based on chaos. Control and Decision, 2002, 17(3): 320-323(李祥飞, 邹恩, 张泰山. 一种模糊神经网络控制器参数的混沌优化设计. 控制与决策, 2002, 17(3): 320-323)
[56] Du Yan-Li, Wu Qing-Xian, Jiang Chang-Sheng, Zhou Li. Improved cooperative particle swarm optimizer for design of fuzzy neural network control system. Control and Decision, 2008, 23(12): 1327-1337(都延丽, 吴庆宪, 姜长生, 周丽. 改进协同微粒群优化的模糊神经网络控制系统设计. 控制与决策, 2008, 23(12): 1327-1337)
[57] Becerikli Y, Oysal Y, Konar A F. Trajectory priming with dynamic fuzzy networks in nonlinear optimal control. IEEE Transactions on Neural Networks, 2004, 15(2): 383-394
[58] Rajapakse A, Furuta K, Kondo S. Evolutionary learning of fuzzy logic controllers and their adaptation through perpetual evolution. IEEE Transactions on Fuzzy Systems, 2002, 10(3): 309-321
[59] Liao Y X, She J H, Wu M. Integrated hybrid-PSO and fuzzy-NN decoupling control for temperature of reheating furnace. IEEE Transactions on Industrial Electronics, 2009, 56(7): 2704-2714
[60] Sun Qiang, Cheng Ming. Nonlinear modeling for doubly salient permanent magnetic motor based on fuzzy neural network. Control Theory & Applications, 2007, 24(4): 601-606(孙强, 程明. 基于模糊神经网络的双凸极永磁电机非线性建模. 控制理论与应用, 2007, 24(4): 601-606)
[61] Uddin M N, Abido M A, Rahman M A. Development and implementation of a hybrid intelligent controller for interior permanent-magnet synchronous motor drives. IEEE Transactions on Industry Applications, 2004, 40(1): 68-76
[62] Lin W M, Hong C M, Cheng F S. Design of intelligent controllers for wind generation system with sensorless maximum wind energy control. Energy Conversion and Management, 2011, 52(2): 1086-1096
[63] Ayoubi M A, Tai L C. Intelligent control of a large variable speed wind turbine. Journal of Solar Energy Engineering-Transactions of the ASME, 2012, 134(1): 011001, doi: 10.1115/1.4004979
[64] Lee Y, Zak S H. Designing a genetic neural fuzzy antilock-brake-system controller. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 198-211
[65] Chen Z M, Meng W J, Zhang J G. Intelligent anti-swing control for bridge crane. Journal of Central South University, 2012, 19(10): 2774-2781
[66] Lin Ye-Jin, Ren Guang. New radial basis function fuzzy network controller based on genetic algorithms for ship control. Control Theory & Applications, 2004, 21(6): 1036-1040(林叶锦, 任光. 遗传优化的径向基函数船舶模糊控制器. 控制理论与应用, 2004, 21(6): 1036-1040)
[67] Chen L H, Chiang C H. New approach to intelligent control systems with self-exploring process. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2003, 33(1): 56-66
[68] Singh N A, Muraleedharan K A, Gomathy K. Damping of low frequency oscillations in power system network using swarm intelligence tuned fuzzy controller. International Journal of Bio-inspired Computation, 2010, 2(1): 1-8
[69] Mishra S, Dash P K, Hota P K, Tripathy M. Genetically optimized neuro-fuzzy IPFC for damping modal oscillations of power system. IEEE Transactions on Power Systems, 2002, 17(4): 1140-1147
[70] Kuang Xian-Yan, Xu Lun-Hui, Huang Yan-Guo. Traffic signal bus-priority control strategy and intelligent control method. Control Theory & Applications, 2012, 29(10): 1284-1290(邝先验, 许伦辉, 黄艳国. 交通信号公交优先控制策略及智能控制方法. 控制理论与应用, 2012, 29(10): 1284-1290)
[71] Wu Xing, Lou Pei-Huang, Tang Dun-Bing. Multi-objective optimization for PID parameter based on elitist-evolution guidance. Control Theory & Applications, 2010, 27(9): 1235-1239(武星, 楼佩煌, 唐敦兵. 基于精英进化导向的多目标PID参数优化. 控制理论与应用, 2010, 27(9): 1235-1239)
[72] Yang Zhi, Chen Zhi-Tang, Fan Zheng-Ping, Li Xiao-Dong. Tuning of PID controller based on improved particle-swarm-optimization. Control Theory & Applications, 2010, 27(10): 1345-1352(杨智, 陈志堂, 范正平, 李晓东. 基于改进粒子群优化算法的PID控制器整定. 控制理论与应用, 2010, 27(10): 1345-1352)
[73] Li Zhong-Hua, Zhang Yu-Nong, Tan Hong-Zhou, Chen Zhuo-Yi. An enhanced artificial immune network with elitist-learning capability for optimization problems. Control Theory & Applications, 2009, 26(3): 283-290(李中华, 张雨浓, 谭洪周, 陈卓怡. 一类具有精英学习能力的增强型人工免疫网络优化算法. 控制理论与应用, 2009, 26(3): 283-290)
[74] Mukherjee V, Ghoshal S P. Intelligent particle swarm optimized fuzzy PID controller for AVR system. Electric Power Systems Research, 2007, 77(12): 1689-1698
[75] Meng An-Bo, Ye Lu-Qing, Yin Hao, Liang Hong-Zhu, Fu Chuang, Cheng Yuan-Chu. Application of genetic algorithm in adaptive governor with variable PID parameters. Control Theory & Applications, 2004, 21(3): 398-404(孟安波, 叶鲁卿, 殷豪, 梁宏柱, 傅闯, 程远楚. 遗传算法在水电机组调速器PID参数优化中的应用. 控制理论与应用, 2004, 21(3): 398-404)
[76] Lacca G, Caraffini F, Neri F. Memory-saving memetic computing for path-following mobile robots. Applied Soft Computing, 2013, 13(4): 2003-2016
[77] Das S, Pan I, Das S, Gupta A. Master-slave chaos synchronization via optimal fractional order PIγDμ controller with bacterial foraging algorithm. Nonlinear Dynamics, 2012, 69(4): 2193-2206