2022年 第48卷 第1期
2022, 48(1): 1-20.
doi: 10.16383/j.aas.c190728
摘要:
基于移动机器人的拣货系统(Robotic mobile fulfillment systems, RMFS)作为一种新型物至人的拣货系统, 相比人工拣货系统和AS/RS拣货系统(下文统称传统拣货系统)具有更高的拣货效率、更好的系统可扩展性和柔性. 为全面了解RMFS的运行模式及其优化方向, 本文首先回顾了RMFS的工作流程及优化理论框架, 然后对RMFS的货位指派、订单分批、任务分配、路径规划以及建模方法等问题进行了文献回顾和总结, 并指出了RMFS与传统拣货系统在拣货过程方面的异同及当前研究的...
基于移动机器人的拣货系统(Robotic mobile fulfillment systems, RMFS)作为一种新型物至人的拣货系统, 相比人工拣货系统和AS/RS拣货系统(下文统称传统拣货系统)具有更高的拣货效率、更好的系统可扩展性和柔性. 为全面了解RMFS的运行模式及其优化方向, 本文首先回顾了RMFS的工作流程及优化理论框架, 然后对RMFS的货位指派、订单分批、任务分配、路径规划以及建模方法等问题进行了文献回顾和总结, 并指出了RMFS与传统拣货系统在拣货过程方面的异同及当前研究的...
2022, 48(1): 21-39.
doi: 10.16383/j.aas.c200166
摘要:
深度强化学习是人工智能领域新兴技术之一, 它将深度学习强大的特征提取能力与强化学习的决策能力相结合, 实现从感知输入到决策输出的端到端框架, 具有较强的学习能力且应用广泛. 然而, 已有研究表明深度强化学习存在安全漏洞, 容易受到对抗样本攻击. 为提高深度强化学习的鲁棒性、实现系统的安全应用, 本文针对已有的研究工作, 较全面地综述了深度强化学习方法、对抗攻击、防御方法与安全性分析, 并总结深度强化学习安全领域存在的开放问题以及未来发展的趋势, 旨在为从事相关安全研究与工程应用提供基础.
深度强化学习是人工智能领域新兴技术之一, 它将深度学习强大的特征提取能力与强化学习的决策能力相结合, 实现从感知输入到决策输出的端到端框架, 具有较强的学习能力且应用广泛. 然而, 已有研究表明深度强化学习存在安全漏洞, 容易受到对抗样本攻击. 为提高深度强化学习的鲁棒性、实现系统的安全应用, 本文针对已有的研究工作, 较全面地综述了深度强化学习方法、对抗攻击、防御方法与安全性分析, 并总结深度强化学习安全领域存在的开放问题以及未来发展的趋势, 旨在为从事相关安全研究与工程应用提供基础.
2022, 48(1): 40-74.
doi: 10.16383/j.aas.c190866
摘要:
通过学习可观测数据的概率密度而随机生成样本的生成模型在近年来受到人们的广泛关注, 网络结构中包含多个隐藏层的深度生成式模型以更出色的生成能力成为研究热点, 深度生成模型在计算机视觉、密度估计、自然语言和语音识别、半监督学习等领域得到成功应用, 并给无监督学习提供了良好的范式. 本文根据深度生成模型处理似然函数的不同方法将模型分为三类: 第一类方法是近似方法, 包括采用抽样方法近似计算似然函数的受限玻尔兹曼机(Restricted Boltzmann machine, RBM)和以受限玻尔兹曼机为...
2022, 48(1): 75-86.
doi: 10.16383/j.aas.c200317
摘要:
虽然深度神经网络 (Deep neural networks, DNNs) 在许多任务上取得了显著的效果, 但是由于其可解释性 (Interpretability) 较差, 通常被当做“黑盒”模型. 本文针对图像分类任务, 利用对抗样本 (Adversarial examples) 从模型失败的角度检验深度神经网络内部的特征表示. 通过分析, 发现深度神经网络学习到的特征表示与人类所理解的语义概念之间存在着不一致性. 这使得理解和解释深度神经网络内部的特征变得十分困难. 为了实现可解释的深度神经...
虽然深度神经网络 (Deep neural networks, DNNs) 在许多任务上取得了显著的效果, 但是由于其可解释性 (Interpretability) 较差, 通常被当做“黑盒”模型. 本文针对图像分类任务, 利用对抗样本 (Adversarial examples) 从模型失败的角度检验深度神经网络内部的特征表示. 通过分析, 发现深度神经网络学习到的特征表示与人类所理解的语义概念之间存在着不一致性. 这使得理解和解释深度神经网络内部的特征变得十分困难. 为了实现可解释的深度神经...
2022, 48(1): 87-102.
doi: 10.16383/j.aas.c200138
摘要:
非局部均值去噪 (Non-local means, NLM) 算法利用图像的自相似性, 取得了很好的去噪效果. 然而, NLM 算法对图像中不相似的邻域块分配了过大的权重, 此外算法的搜索窗大小和滤波参数等通常是固定的且无法根据图像内容的变化做出自适应的调整. 针对上述问题, 本文提出一种无监督多重非局部融合 (Unsupervised multi-non-local fusion, UM-NLF) 的图像去噪方法, 即变换搜索窗等组合参数得到多个去噪结果, 并利用 SURE (Stein's ...
非局部均值去噪 (Non-local means, NLM) 算法利用图像的自相似性, 取得了很好的去噪效果. 然而, NLM 算法对图像中不相似的邻域块分配了过大的权重, 此外算法的搜索窗大小和滤波参数等通常是固定的且无法根据图像内容的变化做出自适应的调整. 针对上述问题, 本文提出一种无监督多重非局部融合 (Unsupervised multi-non-local fusion, UM-NLF) 的图像去噪方法, 即变换搜索窗等组合参数得到多个去噪结果, 并利用 SURE (Stein's ...
2022, 48(1): 103-120.
doi: 10.16383/j.aas.c190303
摘要:
无监督跨域迁移学习是行人再识别中一个非常重要的任务. 给定一个有标注的源域和一个没有标注的目标域, 无监督跨域迁移的关键点在于尽可能地把源域的知识迁移到目标域. 然而, 目前的跨域迁移方法忽略了域内各视角分布的差异性, 导致迁移效果不好. 针对这个缺陷, 本文提出了一个基于多视角的非对称跨域迁移学习的新问题. 为了实现这种非对称跨域迁移, 提出了一种基于多对多生成对抗网络(Many-to-many generative adversarial network, M2M-GAN)的迁移方法. 该方...
无监督跨域迁移学习是行人再识别中一个非常重要的任务. 给定一个有标注的源域和一个没有标注的目标域, 无监督跨域迁移的关键点在于尽可能地把源域的知识迁移到目标域. 然而, 目前的跨域迁移方法忽略了域内各视角分布的差异性, 导致迁移效果不好. 针对这个缺陷, 本文提出了一个基于多视角的非对称跨域迁移学习的新问题. 为了实现这种非对称跨域迁移, 提出了一种基于多对多生成对抗网络(Many-to-many generative adversarial network, M2M-GAN)的迁移方法. 该方...
2022, 48(1): 121-132.
doi: 10.16383/j.aas.c200342
摘要:
因子分析是一种在工业领域广泛使用的统计学方法. 在金融资产管理中, 因子分析通过对历史价格波动的极大似然估计推导自适应的统计学因子来生成风险模型. 与通过使用预先设定具有经济学含义的因子来生成风险模型的基本面因子模型相比, 通过因子分析生成的模型不仅更灵活, 还能发现在基本面模型中缺失的因子. 然而, 由于因子分析所生成模型中的统计学因子缺少可解释性, 因此当金融数据中存在显著噪音时容易过拟合. 针对中国股市数据的风险模型生成问题, 本文提出快速因子分析算法以及将基本面因子结合到因子分析中的挑选...
因子分析是一种在工业领域广泛使用的统计学方法. 在金融资产管理中, 因子分析通过对历史价格波动的极大似然估计推导自适应的统计学因子来生成风险模型. 与通过使用预先设定具有经济学含义的因子来生成风险模型的基本面因子模型相比, 通过因子分析生成的模型不仅更灵活, 还能发现在基本面模型中缺失的因子. 然而, 由于因子分析所生成模型中的统计学因子缺少可解释性, 因此当金融数据中存在显著噪音时容易过拟合. 针对中国股市数据的风险模型生成问题, 本文提出快速因子分析算法以及将基本面因子结合到因子分析中的挑选...
2022, 48(1): 133-143.
doi: 10.16383/j.aas.c200838
摘要:
本文研究了一类分布式优化问题, 其目标是通过局部信息交换使由局部成本函数之和构成的全局成本函数最小. 针对无向连通图, 我们提出了两种基于比例积分策略的分布式优化算法. 在局部成本函数可微且凸的条件下, 证明了所提算法渐近收敛到全局最小值点. 更进一步, 在局部成本函数具有局部Lipschitz梯度和全局成本函数关于全局最小值点是有限强凸的条件下, 证明了所提算法的指数收敛性. 此外, 为了避免智能体之间的连续通信和减少通信负担, 将所提的两种分布式优化算法与事件触发通信相结合, 提出了两种基于...
本文研究了一类分布式优化问题, 其目标是通过局部信息交换使由局部成本函数之和构成的全局成本函数最小. 针对无向连通图, 我们提出了两种基于比例积分策略的分布式优化算法. 在局部成本函数可微且凸的条件下, 证明了所提算法渐近收敛到全局最小值点. 更进一步, 在局部成本函数具有局部Lipschitz梯度和全局成本函数关于全局最小值点是有限强凸的条件下, 证明了所提算法的指数收敛性. 此外, 为了避免智能体之间的连续通信和减少通信负担, 将所提的两种分布式优化算法与事件触发通信相结合, 提出了两种基于...
2022, 48(1): 144-151.
doi: 10.16383/j.aas.c200911
摘要:
为保证预测控制的稳定性, 经典的策略是在预测控制的优化问题中加入终端约束集和终端惩罚函数, 并保证终端约束集是一个在终端控制律作用下的正不变集, 终端惩罚函数是受控系统的局部控制Lyapunov函数. 本文提供了一种求解非线性系统终端约束集、终端控制律和终端惩罚函数的新策略. 通过在优化问题中引入新的变量来降低求解终端约束条件的保守性, 并且可以从理论上保证求解得到的终端约束集更大. 通常情况下, 较大的终端约束集将允许选取的预测时域较小, 因而可以降低预测控制的在线计算负担. 从形式上看, 新...
为保证预测控制的稳定性, 经典的策略是在预测控制的优化问题中加入终端约束集和终端惩罚函数, 并保证终端约束集是一个在终端控制律作用下的正不变集, 终端惩罚函数是受控系统的局部控制Lyapunov函数. 本文提供了一种求解非线性系统终端约束集、终端控制律和终端惩罚函数的新策略. 通过在优化问题中引入新的变量来降低求解终端约束条件的保守性, 并且可以从理论上保证求解得到的终端约束集更大. 通常情况下, 较大的终端约束集将允许选取的预测时域较小, 因而可以降低预测控制的在线计算负担. 从形式上看, 新...
2022, 48(1): 152-161.
doi: 10.16383/j.aas.c210109
摘要:
高速铁路信号系统是高速铁路安全可靠运营的核心装备, 实现高速铁路信号系统智能运维是降低高速铁路运行风险的必要基础保障. 目前, 我国高速铁路信号系统运维研究工作主要集中于器件级系统或基本单元系统, 系统层面的相关研究几乎为空白, 亟需从整体上建立全局架构理论模型. 为此, 定义了关联信号系统, 提出了分散式动态评估函数, 将动态调度纳入运维体系, 构建了分层架构模型. 在此基础上, 针对分层架构模型的决策层和关联信号层, 提出了动态定量评估、动态风险预警和故障诊断的研究方法, 并展望了所面临的挑...
高速铁路信号系统是高速铁路安全可靠运营的核心装备, 实现高速铁路信号系统智能运维是降低高速铁路运行风险的必要基础保障. 目前, 我国高速铁路信号系统运维研究工作主要集中于器件级系统或基本单元系统, 系统层面的相关研究几乎为空白, 亟需从整体上建立全局架构理论模型. 为此, 定义了关联信号系统, 提出了分散式动态评估函数, 将动态调度纳入运维体系, 构建了分层架构模型. 在此基础上, 针对分层架构模型的决策层和关联信号层, 提出了动态定量评估、动态风险预警和故障诊断的研究方法, 并展望了所面临的挑...
2022, 48(1): 162-170.
doi: 10.16383/j.aas.c200136
摘要:
混合动力电动汽车(Hybrid electric vehicles, HEVs)的能量管理问题至关重要, 而混合动力电动汽车的跟车控制不仅涉及跟车效果与安全性, 也影响着能量的高效利用. 将HEVs的跟车控制与能量管理相结合, 提出一种基于安全距离的HEVs车辆跟踪与能量管理控制方法. 首先, 考虑坡度、载荷变动建立了HEVs车辆跟车系统的非线性模型, 并基于安全距离, 提出一种基于道路观测器的动态面控制(Dynamic surface control, DSC)进行车辆跟踪控制. 然后, 结合...
混合动力电动汽车(Hybrid electric vehicles, HEVs)的能量管理问题至关重要, 而混合动力电动汽车的跟车控制不仅涉及跟车效果与安全性, 也影响着能量的高效利用. 将HEVs的跟车控制与能量管理相结合, 提出一种基于安全距离的HEVs车辆跟踪与能量管理控制方法. 首先, 考虑坡度、载荷变动建立了HEVs车辆跟车系统的非线性模型, 并基于安全距离, 提出一种基于道路观测器的动态面控制(Dynamic surface control, DSC)进行车辆跟踪控制. 然后, 结合...
2022, 48(1): 171-181.
doi: 10.16383/j.aas.c200039
摘要:
列车精确停车作为列车自动运行(Automatic train operation, ATO)系统的一项核心功能, 对高速列车的安全和高效运行至关重要. 本文针对高速列车停车过程的特点, 考虑在避免控制输出频繁切换的前提下实现高精度的停车曲线跟踪, 提出了基于模型预测控制(Model predictive control, MPC)的精确停车算法. 针对列车停车过程中外部不确定性阻力干扰, 采用鲁棒模型预测控制方法, 提高对外部干扰的鲁棒性. 引入自触发控制策略, 以进一步减少控制输出的频繁切换,...
列车精确停车作为列车自动运行(Automatic train operation, ATO)系统的一项核心功能, 对高速列车的安全和高效运行至关重要. 本文针对高速列车停车过程的特点, 考虑在避免控制输出频繁切换的前提下实现高精度的停车曲线跟踪, 提出了基于模型预测控制(Model predictive control, MPC)的精确停车算法. 针对列车停车过程中外部不确定性阻力干扰, 采用鲁棒模型预测控制方法, 提高对外部干扰的鲁棒性. 引入自触发控制策略, 以进一步减少控制输出的频繁切换,...
2022, 48(1): 182-193.
doi: 10.16383/j.aas.c210658
摘要:
设计了一种基于折扣广义值迭代的智能算法, 用于解决一类复杂非线性系统的最优跟踪控制问题. 通过选取合适的初始值, 值迭代过程中的代价函数将以单调递减的形式收敛到最优代价函数. 基于单调递减的值迭代算法, 在不同折扣因子的作用下, 讨论了迭代跟踪控制律的可容许性和误差系统的渐近稳定性. 为了促进算法的实现, 建立一个数据驱动的模型网络用于学习系统动态信息, 同时构造评判网络和执行网络用于近似迭代代价函数和计算迭代跟踪控制律. 值得注意的是, 我们提出了新颖的停止准则来保证迭代跟踪控制律的有效性. ...
设计了一种基于折扣广义值迭代的智能算法, 用于解决一类复杂非线性系统的最优跟踪控制问题. 通过选取合适的初始值, 值迭代过程中的代价函数将以单调递减的形式收敛到最优代价函数. 基于单调递减的值迭代算法, 在不同折扣因子的作用下, 讨论了迭代跟踪控制律的可容许性和误差系统的渐近稳定性. 为了促进算法的实现, 建立一个数据驱动的模型网络用于学习系统动态信息, 同时构造评判网络和执行网络用于近似迭代代价函数和计算迭代跟踪控制律. 值得注意的是, 我们提出了新颖的停止准则来保证迭代跟踪控制律的有效性. ...
2022, 48(1): 194-206.
doi: 10.16383/j.aas.c200980
摘要:
高炉铁水硅含量是铁水品质与炉况的重要表征, 冶炼过程关键参数频繁波动及大时滞特性给高炉铁水硅含量预测带来了巨大挑战. 提出一种基于最优工况迁移的高炉铁水硅含量预测方法. 首先, 针对过程变量频繁波动问题, 提出基于邦费罗尼指数的自适应密度峰值聚类算法, 实现对高炉冶炼过程变量的工况划分, 并建立不同工况硅含量预测子模型. 其次, 针对冶炼过程的大时滞特性, 定义相邻时间节点间的硅含量工况迁移代价函数, 并提出多源路径寻优算法, 实现冶炼过程中硅含量最优工况迁移路径及当前时刻硅含量最优预测值的求解...
高炉铁水硅含量是铁水品质与炉况的重要表征, 冶炼过程关键参数频繁波动及大时滞特性给高炉铁水硅含量预测带来了巨大挑战. 提出一种基于最优工况迁移的高炉铁水硅含量预测方法. 首先, 针对过程变量频繁波动问题, 提出基于邦费罗尼指数的自适应密度峰值聚类算法, 实现对高炉冶炼过程变量的工况划分, 并建立不同工况硅含量预测子模型. 其次, 针对冶炼过程的大时滞特性, 定义相邻时间节点间的硅含量工况迁移代价函数, 并提出多源路径寻优算法, 实现冶炼过程中硅含量最优工况迁移路径及当前时刻硅含量最优预测值的求解...
2022, 48(1): 207-222.
doi: 10.16383/j.aas.c200318
摘要:
本文针对因多重不确定执行器故障而引起系统动态突变的非线性系统, 设计了一种基于多模型切换的自适应执行器故障补偿控制策略, 以提高系统应对动态突变的能力, 同时实现不确定执行器故障的快速精确补偿. 针对执行器故障模式的不确定性问题, 采用基于多模型的参数估计方法, 设计了自适应控制器组; 基于最优性能指标函数, 提出了一种控制切换机制, 以选择最佳的自适应控制器作为当前的控制器, 从而实现期望的故障补偿控制. 所设计的多模型自适应控制策略, 可以保证所有闭环系统信号有界, 且在出现有限数量的不确定...
本文针对因多重不确定执行器故障而引起系统动态突变的非线性系统, 设计了一种基于多模型切换的自适应执行器故障补偿控制策略, 以提高系统应对动态突变的能力, 同时实现不确定执行器故障的快速精确补偿. 针对执行器故障模式的不确定性问题, 采用基于多模型的参数估计方法, 设计了自适应控制器组; 基于最优性能指标函数, 提出了一种控制切换机制, 以选择最佳的自适应控制器作为当前的控制器, 从而实现期望的故障补偿控制. 所设计的多模型自适应控制策略, 可以保证所有闭环系统信号有界, 且在出现有限数量的不确定...
2022, 48(1): 223-238.
doi: 10.16383/j.aas.c190254
摘要:
二噁英(Dioxin,DXN)是导致城市固废焚烧(Municipal solid waste incineration, MSWI)建厂存在“邻避现象”的主要原因之一. 工业现场多采用离线化验手段检测DXN浓度, 难以满足污染物减排控制的需求. 针对上述问题, 本文提出了基于潜在特征选择性集成(Selective ensemble, SEN)建模的DXN排放浓度软测量方法. 首先, 采用主元分析(Principal component analysis, PCA)分别提取依据工艺阶段子系统及全流...
二噁英(Dioxin,DXN)是导致城市固废焚烧(Municipal solid waste incineration, MSWI)建厂存在“邻避现象”的主要原因之一. 工业现场多采用离线化验手段检测DXN浓度, 难以满足污染物减排控制的需求. 针对上述问题, 本文提出了基于潜在特征选择性集成(Selective ensemble, SEN)建模的DXN排放浓度软测量方法. 首先, 采用主元分析(Principal component analysis, PCA)分别提取依据工艺阶段子系统及全流...
2022, 48(1): 239-248.
doi: 10.16383/j.aas.c200896
摘要:
电熔镁砂熔炼过程通过电极电流熔化物料, 采用埋弧方式, 边熔化边加料, 其被控对象是以转动方向与频率为输入, 以电极电流为输出的三相电机. 本文通过引入中间变量并转化控制目标, 将电熔镁砂熔炼过程三相电极电流的复杂非线性控制问题简化为线性控制问题, 提出了一种简化的电极电流饱和约束一步最优控制方法, 并通过引入拉格朗日乘子向量和松弛向量验证了该方法的最优性. 理论分析和仿真对比实验结果表明本文所提简化控制方法的有效性和优越性. 此外, 当考虑电熔镁砂熔炼过程中存在的不可测外部干扰时, 在上述简化...
电熔镁砂熔炼过程通过电极电流熔化物料, 采用埋弧方式, 边熔化边加料, 其被控对象是以转动方向与频率为输入, 以电极电流为输出的三相电机. 本文通过引入中间变量并转化控制目标, 将电熔镁砂熔炼过程三相电极电流的复杂非线性控制问题简化为线性控制问题, 提出了一种简化的电极电流饱和约束一步最优控制方法, 并通过引入拉格朗日乘子向量和松弛向量验证了该方法的最优性. 理论分析和仿真对比实验结果表明本文所提简化控制方法的有效性和优越性. 此外, 当考虑电熔镁砂熔炼过程中存在的不可测外部干扰时, 在上述简化...
2022, 48(1): 249-260.
doi: 10.16383/j.aas.c200260
摘要:
现有基于随机退化过程建模的寿命预测研究中, 通常用退化过程的首达时间(First passage time, FPT)来定义寿命. 但是, 这种寿命定义较为保守, 可能会导致其明显小于设备实际寿命. 鉴于此, 基于最后逃逸时间(Last exit time, LET)的概念, 给出一种新的寿命与剩余寿命(Remaining useful life, RUL)定义方式. 在该新框架下, 提出一种基于最后逃逸时间的寿命预测方法, 推导得到最后逃逸时间下基于Wiener退化过程模型的寿命与剩余寿命表达...
现有基于随机退化过程建模的寿命预测研究中, 通常用退化过程的首达时间(First passage time, FPT)来定义寿命. 但是, 这种寿命定义较为保守, 可能会导致其明显小于设备实际寿命. 鉴于此, 基于最后逃逸时间(Last exit time, LET)的概念, 给出一种新的寿命与剩余寿命(Remaining useful life, RUL)定义方式. 在该新框架下, 提出一种基于最后逃逸时间的寿命预测方法, 推导得到最后逃逸时间下基于Wiener退化过程模型的寿命与剩余寿命表达...
2022, 48(1): 261-270.
doi: 10.16383/j.aas.c190128
摘要:
研究了在无向拓扑下, 由多个子群组成的二阶多智能体系统的固定时间比例一致性问题, 采用反推法设计了一种基于事件触发的固定时间非线性比例一致控制策略, 该策略包含分段式事件触发函数: 当智能体在追踪虚拟速度时, 给出了基于速度信息的触发条件; 当智能体速度与虚拟速度达到一致时, 切换至基于位置信息的触发条件, 可有效减少系统能量耗散及控制器更新频次. 通过在位置和速度状态上设置比例参数, 在固定时间内可实现不同子群智能体之间的比例一致. 利用代数图论、线性矩阵不等式以及Lyapunov稳定性理论,...
研究了在无向拓扑下, 由多个子群组成的二阶多智能体系统的固定时间比例一致性问题, 采用反推法设计了一种基于事件触发的固定时间非线性比例一致控制策略, 该策略包含分段式事件触发函数: 当智能体在追踪虚拟速度时, 给出了基于速度信息的触发条件; 当智能体速度与虚拟速度达到一致时, 切换至基于位置信息的触发条件, 可有效减少系统能量耗散及控制器更新频次. 通过在位置和速度状态上设置比例参数, 在固定时间内可实现不同子群智能体之间的比例一致. 利用代数图论、线性矩阵不等式以及Lyapunov稳定性理论,...
2022, 48(1): 271-281.
doi: 10.16383/j.aas.c200302
摘要:
子空间聚类(Subspace clustering)是一种当前较为流行的基于谱聚类的高维数据聚类框架. 近年来, 由于深度神经网络能够有效地挖掘出数据深层特征, 其研究倍受各国学者的关注. 深度子空间聚类旨在通过深度网络学习原始数据的低维特征表示, 计算出数据集的相似度矩阵, 然后利用谱聚类获得数据的最终聚类结果. 然而, 现实数据存在维度过高、数据结构复杂等问题, 如何获得更鲁棒的数据表示, 改善聚类性能, 仍是一个挑战. 因此, 本文提出基于自注意力对抗的深度子空间聚类算法(SAADSC)....
子空间聚类(Subspace clustering)是一种当前较为流行的基于谱聚类的高维数据聚类框架. 近年来, 由于深度神经网络能够有效地挖掘出数据深层特征, 其研究倍受各国学者的关注. 深度子空间聚类旨在通过深度网络学习原始数据的低维特征表示, 计算出数据集的相似度矩阵, 然后利用谱聚类获得数据的最终聚类结果. 然而, 现实数据存在维度过高、数据结构复杂等问题, 如何获得更鲁棒的数据表示, 改善聚类性能, 仍是一个挑战. 因此, 本文提出基于自注意力对抗的深度子空间聚类算法(SAADSC)....
2022, 48(1): 282-291.
doi: 10.16383/j.aas.c200032
摘要:
遮挡及背景中相似物干扰是行人检测准确率较低的主要原因. 针对该问题, 提出一种结合语义和多层特征融合(Combining semantics with multi-level feature fusion, CSMFF)的行人检测算法. 首先, 融合多个卷积层特征, 并在融合层上添加语义分割, 得到的语义特征与相应的卷积层连接作为行人位置的先验信息, 增强行人和背景的辨别性. 然后, 在初步回归的基础上构建行人二次检测模块(Pedestrian secondary detection modul...
遮挡及背景中相似物干扰是行人检测准确率较低的主要原因. 针对该问题, 提出一种结合语义和多层特征融合(Combining semantics with multi-level feature fusion, CSMFF)的行人检测算法. 首先, 融合多个卷积层特征, 并在融合层上添加语义分割, 得到的语义特征与相应的卷积层连接作为行人位置的先验信息, 增强行人和背景的辨别性. 然后, 在初步回归的基础上构建行人二次检测模块(Pedestrian secondary detection modul...
2022, 48(1): 292-301.
doi: 10.16383/j.aas.c190884
摘要:
针对动态主元分析方法中残差自相关性降低过程故障检测率问题, 提出基于动态主元分析残差互异度的故障检测与诊断方法. 首先, 应用动态主元分析(Dynamic principal component analysis, DPCA)计算动态过程数据的残差得分; 接下来, 应用滑动窗口技术并结合互异度指标(Dissimilarity)来监控过程残差得分状态; 最后, 利用基于变量贡献图的方法进行过程故障诊断分析. 本文方法通过DPCA捕获过程的动态特征, 同时互异度指标区别于传统的平方预测误差(Squa...
针对动态主元分析方法中残差自相关性降低过程故障检测率问题, 提出基于动态主元分析残差互异度的故障检测与诊断方法. 首先, 应用动态主元分析(Dynamic principal component analysis, DPCA)计算动态过程数据的残差得分; 接下来, 应用滑动窗口技术并结合互异度指标(Dissimilarity)来监控过程残差得分状态; 最后, 利用基于变量贡献图的方法进行过程故障诊断分析. 本文方法通过DPCA捕获过程的动态特征, 同时互异度指标区别于传统的平方预测误差(Squa...
2022, 48(1): 302-314.
doi: 10.16383/j.aas.c190593
摘要:
近年来, 深度学习技术已在滚动轴承故障检测和诊断领域取得了成功应用, 但面对不停机情况下的早期故障在线检测问题, 仍存在着早期故障特征表示不充分、误报警率高等不足. 为解决上述问题, 本文从时序异常检测的角度出发, 提出了一种基于深度迁移学习的早期故障在线检测方法. 首先, 提出一种面向多域迁移的深度自编码网络, 通过构建具有改进的最大均值差异正则项和Laplace正则项的损失函数, 在自适应提取不同域数据的公共特征表示同时, 提高正常状态和早期故障状态之间特征的差异性; 基于该特征表示, 提出...
近年来, 深度学习技术已在滚动轴承故障检测和诊断领域取得了成功应用, 但面对不停机情况下的早期故障在线检测问题, 仍存在着早期故障特征表示不充分、误报警率高等不足. 为解决上述问题, 本文从时序异常检测的角度出发, 提出了一种基于深度迁移学习的早期故障在线检测方法. 首先, 提出一种面向多域迁移的深度自编码网络, 通过构建具有改进的最大均值差异正则项和Laplace正则项的损失函数, 在自适应提取不同域数据的公共特征表示同时, 提高正常状态和早期故障状态之间特征的差异性; 基于该特征表示, 提出...