2016年 第42卷 第4期
2016, 42(4): 481-494.
doi: 10.16383/j.aas.2016.c160158
摘要:
区块链是随着比特币等数字加密货币的日益普及而逐渐兴起的一种全新的去中心化基础架构与分布式计算范式, 目前已经引起政府部门、 金融机构、 科技企业和资本市场的高度重视与广泛关注. 区块链技术具有去中心化、 时序数据、 集体维护、 可编程和安全可信等特点, 特别适合构建可编程的货币系统、 金融系统乃至宏观社会系统. 本文通过解构区块链的核心要素, 提出了区块链系统的基础架构模型, 详细阐述了区块链及与之相关的比特币的基本原理、 技术、 方法与应用现状, 讨论了智能合约的理念、 应用和意义, 介绍了基...
区块链是随着比特币等数字加密货币的日益普及而逐渐兴起的一种全新的去中心化基础架构与分布式计算范式, 目前已经引起政府部门、 金融机构、 科技企业和资本市场的高度重视与广泛关注. 区块链技术具有去中心化、 时序数据、 集体维护、 可编程和安全可信等特点, 特别适合构建可编程的货币系统、 金融系统乃至宏观社会系统. 本文通过解构区块链的核心要素, 提出了区块链系统的基础架构模型, 详细阐述了区块链及与之相关的比特币的基本原理、 技术、 方法与应用现状, 讨论了智能合约的理念、 应用和意义, 介绍了基...
2016, 42(4): 495-511.
doi: 10.16383/j.aas.2016.c150585
摘要:
情感词典作为判断词语和文本情感倾向的重要工具, 其自动构建方法已成为情感分析和观点挖掘领域的一项重要研究内容. 本文整理了现有的中、英文情感词典资源, 同时分别从知识库、语料库、以及两者结合的角度, 归纳现有英文和中文情感词典的构建方法, 分析了各种方法的优缺点, 并总结了情感词典构建中的若干难点问题. 之后, 我们回顾了情感词典性能评估方法及相关评测竞赛. 最后总结了情感词典构建任务的发展前景以及一些亟需解决的问题.
情感词典作为判断词语和文本情感倾向的重要工具, 其自动构建方法已成为情感分析和观点挖掘领域的一项重要研究内容. 本文整理了现有的中、英文情感词典资源, 同时分别从知识库、语料库、以及两者结合的角度, 归纳现有英文和中文情感词典的构建方法, 分析了各种方法的优缺点, 并总结了情感词典构建中的若干难点问题. 之后, 我们回顾了情感词典性能评估方法及相关评测竞赛. 最后总结了情感词典构建任务的发展前景以及一些亟需解决的问题.
2016, 42(4): 512-523.
doi: 10.16383/j.aas.2016.c150529
摘要:
针对机动多目标跟踪中的传感器控制问题, 本文提出一种基于信息论的多模型多伯努利滤波器的控制方案. 首先, 基于随机有限集(Random finite set, RFS)方法给出信息论下的传感器控制的一般方法; 其次, 本文给出多模型势均衡多目标多伯努利滤波器的序贯蒙特卡罗实现形式. 此外, 提出一种目标导向的多伯努利概率密度的粒子采样方法, 并借助该方法近似多目标概率密度, 继而利用Bhattacharyya 距离求解最终的控制方案. 典型机动多目标跟踪问题的仿真应用验证了本文传感器控制方法的有...
针对机动多目标跟踪中的传感器控制问题, 本文提出一种基于信息论的多模型多伯努利滤波器的控制方案. 首先, 基于随机有限集(Random finite set, RFS)方法给出信息论下的传感器控制的一般方法; 其次, 本文给出多模型势均衡多目标多伯努利滤波器的序贯蒙特卡罗实现形式. 此外, 提出一种目标导向的多伯努利概率密度的粒子采样方法, 并借助该方法近似多目标概率密度, 继而利用Bhattacharyya 距离求解最终的控制方案. 典型机动多目标跟踪问题的仿真应用验证了本文传感器控制方法的有...
2016, 42(4): 524-534.
doi: 10.16383/j.aas.2016.c150402
摘要:
对运输能力受限条件下的跨单元调度问题进行分析, 提出一种基于动态决策块和蚁群优化 (Ant colony optimization, ACO) 的超启发式方法, 同时解决跨单元生产调度和运输调度问题. 在传统超启发式方法的基础上, 采用动态决策块策略, 通过蚁群算法合理划分决策块, 并为决策块选择合适的规则. 实验表明, 采用动态决策块策略的超启发式方法比传统的超启发式方法具有更好的性能, 本文所提的方法在最小化加权延迟总和目标方面有较好的优化能力 并且具有较高的计算效率.
对运输能力受限条件下的跨单元调度问题进行分析, 提出一种基于动态决策块和蚁群优化 (Ant colony optimization, ACO) 的超启发式方法, 同时解决跨单元生产调度和运输调度问题. 在传统超启发式方法的基础上, 采用动态决策块策略, 通过蚁群算法合理划分决策块, 并为决策块选择合适的规则. 实验表明, 采用动态决策块策略的超启发式方法比传统的超启发式方法具有更好的性能, 本文所提的方法在最小化加权延迟总和目标方面有较好的优化能力 并且具有较高的计算效率.
2016, 42(4): 535-544.
doi: 10.16383/j.aas.2016.c150486
摘要:
卡尔曼滤波在高斯白噪声的假设下是一种最优滤波, 基于区间数学理论的集员滤波 (Set-membership filter, SMF)能够有效处理有界噪声假设下的滤波问题. 然而, 随机噪声和有界噪声在许多情况下会同时干扰控制系统. 由于两种滤波算法都受到各自适用范围的限制, 使用单一滤波算法难以得到理想的估计结果. 本文通过建立具有双重不确定性系统的模型, 提出了一种基于贝叶斯估计联合滤波算法. 该算法用卡尔曼滤波处理系统的随机不确定性, 用集员滤波处理系统的有界不确定性, 得出一个易于实现的滤...
卡尔曼滤波在高斯白噪声的假设下是一种最优滤波, 基于区间数学理论的集员滤波 (Set-membership filter, SMF)能够有效处理有界噪声假设下的滤波问题. 然而, 随机噪声和有界噪声在许多情况下会同时干扰控制系统. 由于两种滤波算法都受到各自适用范围的限制, 使用单一滤波算法难以得到理想的估计结果. 本文通过建立具有双重不确定性系统的模型, 提出了一种基于贝叶斯估计联合滤波算法. 该算法用卡尔曼滤波处理系统的随机不确定性, 用集员滤波处理系统的有界不确定性, 得出一个易于实现的滤...
2016, 42(4): 545-555.
doi: 10.16383/j.aas.2016.c150480
摘要:
为解决任意初态下的轨迹跟踪问题, 针对一类含参数和非参数不确定性的非线性系统, 提出基于滤波误差初始修正的自适应迭代学习控制方法. 利用修正滤波误差信号设计学习控制器, 并以Lyapunov方法进行收敛性能分析. 依据类Lipschitz条件处理非参数不确定性, 对于处理过程中出现的未知时变参数向量, 利用自适应迭代学习机制进行估计. 经过足够多次迭代后, 藉由修正滤波误差在整个作业区间收敛于零, 实现滤波误差本身在预设的作业区间也收敛于零. 仿真结果表明了本文所提控制方法的有效性.
为解决任意初态下的轨迹跟踪问题, 针对一类含参数和非参数不确定性的非线性系统, 提出基于滤波误差初始修正的自适应迭代学习控制方法. 利用修正滤波误差信号设计学习控制器, 并以Lyapunov方法进行收敛性能分析. 依据类Lipschitz条件处理非参数不确定性, 对于处理过程中出现的未知时变参数向量, 利用自适应迭代学习机制进行估计. 经过足够多次迭代后, 藉由修正滤波误差在整个作业区间收敛于零, 实现滤波误差本身在预设的作业区间也收敛于零. 仿真结果表明了本文所提控制方法的有效性.
2016, 42(4): 556-565.
doi: 10.16383/j.aas.2016.c140897
摘要:
针对二维复稀疏信号重建时存在存储空间和计算复杂度增加的问题, 本文提出了一种快速并行重建二维复稀疏信号的并行线性Bregman迭代(Parallel fast linearized Bregman iteration, PFLBI)算法. 首先, 构建了二维复稀疏信号的结构模型以及PFLBI算法基本迭代格式; 其次, 通过变步长方式提高迭代收敛速度, 而每次迭代的步长则是通过估计中间变量的积累量突破收缩阈值需要的积累步数得到的; 再次, 对算法的性能指标进行了分析; 最后, 将该算法应用于逆合成...
针对二维复稀疏信号重建时存在存储空间和计算复杂度增加的问题, 本文提出了一种快速并行重建二维复稀疏信号的并行线性Bregman迭代(Parallel fast linearized Bregman iteration, PFLBI)算法. 首先, 构建了二维复稀疏信号的结构模型以及PFLBI算法基本迭代格式; 其次, 通过变步长方式提高迭代收敛速度, 而每次迭代的步长则是通过估计中间变量的积累量突破收缩阈值需要的积累步数得到的; 再次, 对算法的性能指标进行了分析; 最后, 将该算法应用于逆合成...
2016, 42(4): 566-579.
doi: 10.16383/j.aas.2016.c150255
摘要:
在光谱数据的多元校正中, 光谱数据通常是在多种不同的环境条件下收集的. 为了建模来源于不同环境中的高维光谱数据, 本文提出了一种新的稀疏贝叶斯混合专家模型, 并将其用来选择多元校正模型的稀疏特征. 混合专家模型能够把训练数据划分到不同的子类, 之后使用不同的预测模型来分别对划分后的数据进行预测, 因此这种方法适合于建模来自于多种环境下的光谱数据. 本文提出的稀疏的混合专家模型利用稀疏贝叶斯的方法来进行特征选择, 不依赖于事先指定的参数; 同时利用probit模型作为门函数以得到解析的后验分布, ...
在光谱数据的多元校正中, 光谱数据通常是在多种不同的环境条件下收集的. 为了建模来源于不同环境中的高维光谱数据, 本文提出了一种新的稀疏贝叶斯混合专家模型, 并将其用来选择多元校正模型的稀疏特征. 混合专家模型能够把训练数据划分到不同的子类, 之后使用不同的预测模型来分别对划分后的数据进行预测, 因此这种方法适合于建模来自于多种环境下的光谱数据. 本文提出的稀疏的混合专家模型利用稀疏贝叶斯的方法来进行特征选择, 不依赖于事先指定的参数; 同时利用probit模型作为门函数以得到解析的后验分布, ...
2016, 42(4): 580-592.
doi: 10.16383/j.aas.2016.c150199
摘要:
乳腺超声(Breast ultrasound, BUS)图像具有较低的信噪比、 较低的对比度以及较模糊的边缘, 其分割是一项富有挑战性的工作. 本文提出了一种多域协同分割模型, 该模型通过结合空域与频域先验, 并引入协同分割的思想来实现对乳腺超声序列的分割. 模型在空域中得到肿瘤的姿态、 位置和强度信息, 在频域中通过使用相位一致性与零交叉检测得到肿瘤的边缘信息, 最后利用协同分割的思想构建起全局能量项, 有效地利用了图像序列信息.实验结果表明, 与传统的乳腺超声图像分割方法相比, 本文提出的分...
乳腺超声(Breast ultrasound, BUS)图像具有较低的信噪比、 较低的对比度以及较模糊的边缘, 其分割是一项富有挑战性的工作. 本文提出了一种多域协同分割模型, 该模型通过结合空域与频域先验, 并引入协同分割的思想来实现对乳腺超声序列的分割. 模型在空域中得到肿瘤的姿态、 位置和强度信息, 在频域中通过使用相位一致性与零交叉检测得到肿瘤的边缘信息, 最后利用协同分割的思想构建起全局能量项, 有效地利用了图像序列信息.实验结果表明, 与传统的乳腺超声图像分割方法相比, 本文提出的分...
2016, 42(4): 593-604.
doi: 10.16383/j.aas.2016.c150425
摘要:
浮筏养殖广泛存在于我国近海海域, 可见光遥感图像无法完全准确地获取养殖目标, 而基于主动成像的合成孔径雷达(Synthetic aperture radar, SAR)遥感图像能够得到养殖目标, 因此采用SAR图像进行海洋浮筏养殖目标识别. 然而, 海洋遥感SAR图像包含大量相干斑噪声, 并且SAR图像特征单一, 使得目标识别难度较大. 为解决这些问题, 提出一种深度协同稀疏编码网络(Deep collaborative sparse coding network, DCSCN)进行海洋浮筏识别...
浮筏养殖广泛存在于我国近海海域, 可见光遥感图像无法完全准确地获取养殖目标, 而基于主动成像的合成孔径雷达(Synthetic aperture radar, SAR)遥感图像能够得到养殖目标, 因此采用SAR图像进行海洋浮筏养殖目标识别. 然而, 海洋遥感SAR图像包含大量相干斑噪声, 并且SAR图像特征单一, 使得目标识别难度较大. 为解决这些问题, 提出一种深度协同稀疏编码网络(Deep collaborative sparse coding network, DCSCN)进行海洋浮筏识别...
2016, 42(4): 605-616.
doi: 10.16383/j.aas.2016.c150485
摘要:
针对夜间复杂照明环境导致车灯检测率低的问题, 提出了一种基于大气反射-散射模型的复原图像中夜间交通视频车灯检测算法. 首先根据漫反射原理抑制路面漫反射光, 在对大气散射模型做了改进之后, 估计了大气散射模型中的大气光, 再根据暗原色先验理论估计环境光, 重新定义透射率, 从而得到了只含有车灯及反射区域的复原图像.为了进一步抑制该复原图像中的强光光晕, 再次利用暗原色先验理论重新估计环境光, 得到最终的复原图像. 最后对复原图像中的所有亮斑根据四类几何特征逐步筛选, 排除视野中的非车灯. 实验结果...
针对夜间复杂照明环境导致车灯检测率低的问题, 提出了一种基于大气反射-散射模型的复原图像中夜间交通视频车灯检测算法. 首先根据漫反射原理抑制路面漫反射光, 在对大气散射模型做了改进之后, 估计了大气散射模型中的大气光, 再根据暗原色先验理论估计环境光, 重新定义透射率, 从而得到了只含有车灯及反射区域的复原图像.为了进一步抑制该复原图像中的强光光晕, 再次利用暗原色先验理论重新估计环境光, 得到最终的复原图像. 最后对复原图像中的所有亮斑根据四类几何特征逐步筛选, 排除视野中的非车灯. 实验结果...
2016, 42(4): 617-630.
doi: 10.16383/j.aas.2016.c150206
摘要:
提出了一种新的局部图像描述符: 特征联合和旋转不变空间分割联合描述符(Feature combination and rotation invariant space division combination descriptor, FCSCD). 提出了一种新的局部特征: WLBP (Weber local binary pattern), 该特征由局部二进制模式和韦伯二进制差分激励联合得到. 提出了一种新的用于特征汇聚的旋转不变空间分割方法, 该方法由强度序空间分割和圆环空间分割联合得到. ...
提出了一种新的局部图像描述符: 特征联合和旋转不变空间分割联合描述符(Feature combination and rotation invariant space division combination descriptor, FCSCD). 提出了一种新的局部特征: WLBP (Weber local binary pattern), 该特征由局部二进制模式和韦伯二进制差分激励联合得到. 提出了一种新的用于特征汇聚的旋转不变空间分割方法, 该方法由强度序空间分割和圆环空间分割联合得到. ...
2016, 42(4): 631-640.
doi: 10.16383/j.aas.2016.c150296
摘要:
提出一种基于压缩感知(Compressive sensing, CS)和多分辨分析(Multi-resolution analysis, MRA)的多尺度最小二乘支持向量机(Least squares support vector machine, LS-SVM). 首先将多尺度小波函数作为支持向量核, 推导出多尺度最小二乘支持向量机模型, 然后基于压缩感知理论, 利用最小二乘匹配追踪(Least squares orthogonal matching pursuit, LS-OMP)算法对多尺...
提出一种基于压缩感知(Compressive sensing, CS)和多分辨分析(Multi-resolution analysis, MRA)的多尺度最小二乘支持向量机(Least squares support vector machine, LS-SVM). 首先将多尺度小波函数作为支持向量核, 推导出多尺度最小二乘支持向量机模型, 然后基于压缩感知理论, 利用最小二乘匹配追踪(Least squares orthogonal matching pursuit, LS-OMP)算法对多尺...