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Abstract Nonlinear approximation has been widely applied to many fields. As a kind of simple
and effective approach, the hinge-finding algorithm has particular advantage. The algorithm uses
the hinging hyperplanes model that uses hinging hyperplanes as basis functions in expansion. By
means of theoretically analyzing it is shown that the representation capability of the model is defi-
cient. The deficiency causes the model’s inability to achieve optimal approximation. In this paper
the hinging hyperplanes model is extended and the deficiency is remedied at a two-dimensional
space. The extended model has enough representation capability, which theoretically ensures the
possibility to achieve optimal approximation. In simulation, with the same number of parameters,
the new algorithm gets better approximation preciston and less prediction error than those of the
hinge-finding algorithm.,
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rithm

1 Introduction

In essence, nonlinear approximation can be described as fitting the basis functions ex-
pansion to the original nonlinear functions. Generally, the basis functions can be obtained
by parameterizing a single mother basis function. The typical mother basis functions in-
clude the Gaussian bell, the trigonometric function, the unit interval indicator function,
the unit step function and the sigmoid function. These mother basis functions achieve good
results respectively in different applications. When taking some piecewise linear (PWL)
functions as mother basis function, one has the PWL expansion.

The PWL models have been proven very helpful in the nonlinear circuits analysis, not
only from computational point of view but also because they are much more amenable to a-
nalysis than general nonlinear equations, and make it easier to get insight into the behavior
of these nonlinear systems. Moreover, in contrast with other nonlinear functions, PWL
functions are preserved under the inverse and composition operations that are useful in
nonlinear circuit analysis.

Recently, some PWL approximation methods have been presented-""*"*), Among them
the hinge-finding algorithm proposed by Breiman is a kind of simple and practical nonlinear
approximation approach. The hinge-finding algorithm uses the hinging hyperplanes model
that regards the hinging hyperplanes as the basis functions in expansion*’!. Theoretically,
the hinging hyperplane model can serve as a universal approximant of all continuous func-
tions at any accuracy-*. However, according to theoretical analyzing the representation
capability of the model is deficient and this makes it impossible to achieve optimal approxi-
mation with the model*). In this paper the hinging hyperplanes model is extended and the
deficiency of the model is remedied at a two-dimensional space. The extended model’s rep-
resentation capability ensures that it 1s possible to achieve optimal approximation theoreti-
cally. With the same number of parameters, the new algorithm named enhanced hinge-
finding algorithm gets better approximation precision and less prediction error than the
hinge-tinding algorithm in simulation.
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2 Deficiency of the Hinging Hyperplanes Model

The hinging hyperplanes model takes the following three functions as mother basis

functions.
a'x+ B, max(Elx+ ¢ ,Ex+ ), min(Eix+ 6y & x+ &)
where a,§1 1152 GRE ’ ﬁ! §1 !Cz ER-

Actually, the hinging hyperplanes model is identified with the canonical model pro-
posed by Kang and Chua'® and it is proven in [ 5] that the canonical model cannot repre-
sent all two-dimensional continuous PWL functions. In fact, the model presented by
Breiman only covers a part of two-dimensional continuous PWL functions that possess the
consistent variation property and is far from representing all two-dimensional continuous
PWL functions. For example, the PWL function shown in Fig. 1(a) cannot be represented
by the model. Fig. 1(b) indicates the domain of the function., However, the model given in

. . : 1
this paper can represent this function as y=={(x; — |z |)+ 1z, — |x22 | | }.
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Fig.1 The PWL function that cannot be represented by the hinging hyperplanes model

The limitation of the hinging hyperplanes model results in that the hinge-finding algo-
rithm cannot achieve the optimum approximation. The algorithm proposed in this paper is
based on the model possessing sufficient representation capability and can realize the opti-
mum approximation theoretically.

3 Enhanced Model

First, 1t is necessary to review the canonical PWL model proposed by Kang and

Chua®! and to determine the deficiency of the model. The canonical PWL model possesses
the following form:

fx) =a"x+p+ D>, (— D% | alx+5 | (1)
where a,a; €R*, 8,8, €R, ¢,=0,1. |
Let g'(x) =E&'x+¢

gx) =gl +gx)+ 1D | giy(x) |, 6 =0,l1
gx) =g +gdx)+ D | g'x) |y, 06=0,1
Then (1) can be represented as f' (x)=g°(x)+ 2ig! (x). It is evident that g°(x) is a

plane and g' (x) a hinging plane. A sort of g?(x) is shown in Fig. 1. What should be no-
ticed 1s that there is a nesting of two levels of absolute value in the expression of g?(x).
Definition. Let a 2-D continuous PWL function consist of the following m planes:
y = anx +ayx; + b

= anx, +apx, +56
Y 21X 22 L2 2, m>> 2

Y — Apn1 X +am2I2 +bm
It Equation group (2) has solutions, the continuous PWL function corresponding to



10 ACTA AUTOMATICA SINICA Vol. 29

(2) is called a fundamental structure of PWL function and denoted by y= f* (x).
(y = apx; t+anpx: + b

YV = A Xy T do2 X2 T bz

< (2)
Y = Gm T T Ame X2 T b,
Ay Az | "1
A1 Qg 1 T ]
[ et A — s € — y X =
&8 a & an &8 8 _Iz _|
aﬂ‘ﬂ a?ﬂz— L 1 — m}{l

Lemma 1. If rank(A,—e)=3, y=f(x)=g"(x)+2gi (x)+ 2g} (x).

The proof 1s in Appendix,

Lemma 2. If rank(A,—e)=2, v= F(x)=g°(x)+tg'(x).

The proof 1s in Appendix.

Lemma 3. If rank(A,—e)=1, y= A (x)=g"(x).

The conclusion 1s evidently true.

Since any continuous PWL function can be represented as the superposition of some
fundamental structures, we arrive at the following conclusion.

Theorem 1. Any 2-D continuous PWL function can be represented as {ollows:

y = Zf?(x) = g (x) + Zg}(x) -+ ng(.x).

The {ollowing theorem converts the absolute value representation to a minimum-maxi-
mum form to make the comparison with the hinging hyperplanes model easy.

Theorem 2. Any 2-D continuous PWL function can be represented as the superposition
of following seven kinds of functions:

a'x + 3 max(é?x + & s é%x—!— gz) ’ mm(g;rx-F C1 ﬂx + &)
max(a; x + 3, max(a; x4+ 3, a; x+ 3;)), max(e; x4+ B, min(a; x+ 3, a; x+5))
min(a; x + 8, min(a; x+ B, asx+ 3)), min(a; x+ 6, max(a: X+ Ls @i x+ 3))
where a,ax & »«&: ,gl 9§g ERE ’ ﬁpﬁl 9ﬂ2 9‘83 #gl ng cR.

The proof 1s in Appendix.

Apparently, the hinging hyperplanes model only uses three of the above seven mother
basis functions. Therefore the representation capability of the model is not sutficient and it
i1s impossible to obtain optimum approximation with the model though the model can ap-
proximate any continuous nonlinear functions at any accuracy.

4 Simulation Experiment

Here, the enhanced hinge-finding algorithm still employs the iterative process used in
the hinge-finding algorithm to finding the hinge, updating the hinge and adding the hinge.
However, the hinge functions not only include the three kinds of functions in the hinging
hyperplanes model but also include the four kinds of functions supplied in Theorem 2. In
fact, this algorithm employs all mother basis functions of the two-dimensional continuous
PWL functions. In other word, the model used in the algorithm possesses sufficient repre-
sentation capability. So it is theoretically ensured that the algorithm can achieve optimum
approximation. The simulation experiment shows that the new algorithm is superior to the
hinge-tinding algorithm (with the same number of parameters, the new algorithm gets
better approximation precision and less prediction error than the hinge-finding algorithm).

In the simulation experiment the enhanced hinge-finding algorithm and the hinge-find-

ing algorithm are respectively applied to fitting the PWL functions to the sample data of

. . —5, 1 x—0.25el;  —&, ) x—0.75e] % .
the nonlinear function y=G(x)=e "'~~~ t—¢ 7' * in the rectangle area [0,1]X

10,1 ]CR?, where e= _1_.
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In order to fully examine the approximation effects under the different nonlinear de-

grees, (4),0,) 1s assigned three values and the corresponding three experiments are respec-
tively fulfilled.

The sample data x, (1<\¢t<_N) are randomly generated in the rectangle area [0,1] X

[0,11CR*. The signal-to-noise and the number of parameters are respectively fixed at
3. 28 and 36.

The approximation precision and the prediction error are all calculated by formula E=

N
2. (3, ~y,)?

t=1

N
2. (y,—§)7

¢ =1

,» where ¥, 1s the approximation result (namely the value of PWL function) of

.. . . 1 &
the original nonlinear function at x,, y==2.y,.

r==1]
When the approximation error is calculated, let N=500 and yv,=G(x,) +e,, where e,
1s stochastic noise,
When the prediction error 1s calculated, let N=4900, y,=G(x,) and the sample data
will be regenerated, The results of simulation experiment are listed in Table 1.

Table 1. Simulation Results of Two Algorithms

5, 5, approximation approximation prediction prediction
error of new algonthm  error of old algorithm error of new algonthm error of old algorithm
16 16 0, 02472 0, 0787 0.0296 0, 0841
e, 9 0. 0086 0.0636 0.0117 0. 0809
0. 0063 J.0134 0. 0084 0. 0160

Figs. 2(a), 2(b) and 2(c) respectively show the original function, the result of the
hinge-finding algorithm and the result of the enhanced hinge-finding algorithm.

(a) the original function (b) the result of old algorithm (¢) the result of new algorithm

Fig.2 'The comparison among the original function and the results of both algorithms

5 Conclusion

As a kind of simple and effective nonlinear approximation method, the hinge-finding
algorithm has particular advantage. However, The limitation of the hinging hyperplanes
model results in that the hinge-finding algorithm can only achieve the optimum approxima-
tion on one-dimensional space. In order to obtain desirable approximation precision on
high-dimensional space it is inevitable to increase the pieces on the PWL function, namely,
to increase the parameters., In this paper the hinging hyperplanes model is improved on
two-dimensional space and the new PWL approximation algorithm——enhanced hinge-find-
ing algorithm——1is constructed by means of the model improved. In the theoretical analysis
and the stmulation experiment it i1s shown that with the same number of parameters, the
new algorithm gets better approximation precision and less prediction error than the hinge-
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finding algorithm presented by Breiman. Meantime, the improvement contributes to the i1-
dea of constructing the PWL approximation algorithm on high-dimensional space.
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Appendix
Proof of Lemma 1, Here, the PWL function represented by (2) consists of m (m=3) planes that inter-
sect at one point,

I x, is regarded as a constant, according to the conclusion in Kang and Chua'!, we have

gl (1) = alaz)x; + flx) = alz )z, + g° () + D gl (x,) =
i
alx)z + e, 0+ D (g + g+ D gz +¢ 1)y o = 0,1
l

Because the function is piecewise linear,

g (z) = [&a]| " +;’+Z£:([¢“0] Ul g+ (= D% | [ns0]

! | _.I'g_J H_.I'g]-‘{—‘,bf )! 2 ¥, =091

Since the PWL function consists of m planes intersecting at one point, all the lines that partition the do-
main have one common point,

= [

So 2 (—1)® [@,()jl:j +¢ | =0 | [1,0] Il]-{'r y 01 =0,1, 6=0,1., Otherwise, some lines
l 2 Ao

that partition the domain will be parallel, This is inconsistent with that all the lines partitioning the domain
have one common point., Thus

g (x2) =gl () + gl (x)+ 1) | g2(x) |= g'(x), 6 = 0,1
g2 (z2,x355z,) = g1 () + g3 (x) + (— 1) | g3 (x) gt (x)

gil (x2) = gil,l (z2) +§21,2(I2) F(— 1) | gil.z(-’rz) = @)+ g:(x) £ g2 () | = g°(x), ¢=0,1
According to the conclusion in Kang and Chua'!! again we have

y= f(x) = fi (x:) = g7 (22) + Zgil G(xp) = g (x)+ ng (x) = g°(x) + Zg} (x) + ng (x)

Therefore the conclusion is right.

Proof of Lemma 2. Because only fundamental structure (Equation group (2) has solutions and the func-
tion 1s monodrome one) will be considered, it is inevitable that m=2 and rank(A)=2.

Here A is a nonsingular matrix. Thus Ax=e has a unique solution p,.
1
)

We expend p, to an orthogonal matrix P=={ p,,p, ] (only by taking one standard orthogonal solutions
T
Of pl .x""O as pz)-

A

— S

Let [ p |l .= and p, = p,6.

Then an orthogonal transformation x= P{ is constructed, where {= o }

R,

So Ax=AP{=[e5,C]¢, where C=| " ]

|_ Loz
Thus the two planes in (2) can be represented as follows:

y = §13“ ClZCZ T b
Al
{y= §18~-sz§z + b, ( )
~ 1 PO
“ ./ ™
1f we use orthogonal transformation [g = V1 —;32 ﬂf— & z; again, (Al) can be repre-
1| 51 ]
V1+8  J1+68
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sented as follows.

y 1
Yy - (ciz &+ b))
1
) v - (A2)
h.}’f - \/1+52(sz§2 + b )

Considering that all transformations used are orthogonal transformations, the function represented by
(A2) is identical with that represented by (2).
Now (A2) can be denoted by y'=h({,) and we have y' =h{({;)=g" (&) +g' (&),

So y=06+ V/1+8 g (&) + V1+8 g' (&),

Applying {=P" x, the inverse transformation of x= P{ to this function, we have the conclusion.
y= filx) =pTx+ V1+&8L(pix)+ V/1+8g" (plx) = g°(x) + g (x).

Proof of Theorem 2, Note that max(a,b)*&+b+zlaﬁb, and nﬂn(a,b)*a+b_2]ahbl

g (x) =gl (x)+gi(x)+(—1){gi(x)|(6=0,1) corresponds to the following two minimum-maximum
functions:

. It 1s evident that

gl (x)+2g% (x) | g1 (x) ) nd min(g? (x)+2g3 (x) | g7 (x) )
2 2 2 2

Since the linear combination of functions of the form of g’ (x) is still a function of the form of g’ (x),
the two minimum-maximum functions mentioned above can be reduced as max (g} (x), g3 (x)) and
min{gl (x),g7(x)).

Similarly, g?(x)=g°(x) +g' (x)+(—1)"{g' (x) [ (6=0,1) corresponds to the two minimum-maxi-
mum functions max(g' (x),g° (x)) and min(g' (x),g" (x)).

Thus the proposed theorem is correct. L]
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