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Output Regulation of Singular Nonlinear Systems Via
Output Dynamic Feedback!’
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Abstract The output regulation problem for singular nonlinear systems is considered. Without
the assumption of normalizability, an output dynamic feedback reduced-order normal controller is
designed. Necessary and sufficient conditions for the output regulation problem to be solvable are
derived.
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1 Introduction

Singular systems are more general than normal state space systems, which are also
called descriptor systems, generalized systems, or differential-algebraic systems. There
are many practical systems modeled by singular systems such as electrical net'!), con-
strained robots'*) and so on. The singular linear system theory has been mature and widely
used in practice . For singular nonlinear system theory, there have been many papers-*~*,
which are paid much attention. But there are still a lot of open problems for singular non-
linear system theory.

The output regulation problem i1s an important problem, which is used to track refer-
ence outputs and reject a class of disturbances, It is well-known that the output regulation
problem of linear systems can be solved by regulator equations. In 1990, famous scholars
[sidori and Byrnes extended the above result to nonlinear systems'®™., Under some condi-
tions, the output regulation problem of nonlinear systems can be solved by nonlinear regu-
lator equations. For singular linear system theory, a singular form of regulator equations
is given by [ 6]. Inspired mainly by [5,6], the authors of [ 3] researched the output regu-
lation of singular nonlinear systems and gave some excellent results, such as generalized
version of the centre manifold theorem and regulator equations. Since it is difficult to real-
ize singular controller physically, 1t 1s desirable to design normal controllers. Under the
assumption of normalizability, in [ 3] a full-order normal controller is designed. But in
fact, normalizability may not be satisfied. It is told in [ 6 ] that the assumption of normaliz-
ability can be removed for singular linear systems. Inspired by [ 3,6 ], we try to remove
the assumption of normalizabilty and design reduced-order normal controllers in this pa-
per. Applying the results of this paper to singular linear systems, we may get yet a new
controller different from that in | 6 ]. The way to remove the assumption of normalizability
in [ 6] is the system decomposition proposed by [1], which is dependent on the assumption
ot regularity, In this paper, we do not assume the singular linear system is regular. So e-
ven for singular linear systems, this paper is also meaningful.

This paper 1s organized as follows. In Section 2, the output regulation problem is
stated and basic assumptions are given. In Section 3, some basic lemmas and the main re-
sult are given. Section 4 is the conclusion.
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Notations. Throughout the paper, the superscript “T” stands for matrix transposi-
tion, K" denotes the n-dimensional Euclidean space, R™™™ is the set of nXm real matrices,
o( * ) denotes the set composed by all the eigenvalues of a matrix, ¢(E, A) denotes the set
composed by all the finite eigenvalues of a matrix pencil AE—A, C denotes {A| ReA< 0}, and
C" denotes {A|Rex==0}.

2 Statement of problem and basic assumptions
The complete statement of output regulation problem is given in [ 3. In this paper,
we focus on designing reduced-order normal controllers to solve output regulation problem
by output feedback. So the problem in this paper is stated as the following.
Consider the singular nonlinear system
Ex(t) = fCx(t), uCt), w(t)), Ex(0) = x,
e(t) = h(x(t), w(t)), t=0
and an exosystem w () =s(w(t)), w(0)=w,, where f, h, s are smooth mappings; x€ R"
1s the vector of state variables; u& R™ 1s the vector of input variables; e€& R? is the vector
of output variables; w& R? is the disturbance signal; EF€ R"*” is a singular constant ma-
trix; rankE=r<n, f(0,0,0)=0, h(0,0)=0. We try to design the kind of reduced-order
normal controller: Z (¢)=g(z(¢), e()), u(t) =p(z(t), e(t)), where zER*, k<n+g,
g(0,0)=0, #(0,0)=0, such that the closed-loop system
Ex () = f.(x.(t), wi)), Ex.(0) = x.,
w(t) = s(w(z)), w(0) = w, (2)
e(t) = h.(x.(t), w(t))
where E, = blockdiag {E, I,}, f. (x.,w)= [ f (x,(z,h(x,w)),w) g (z,h(x,w))]",
h (x.,w)=h(x,w), x,=[x" z'1', has the following properties
R1). The singular system E.x.(¢) =A.x, 1s strongly stable, 1.e., (E,, A,) 1s regu-
lar, impulse-free and 6(E., A, )CC (see [1]), where E.x_.(¢t)=A.x, is the linearization of
the system E . x (t)=f.(x.,0).
R2). The trajectory (x.(t),w(t)) starting trom every sufficiently small initial value
(x,, W,) satisfies lime(¢) =limh, (x.(t), w(t))=0.

= O 100

(1)

We denote the linearization of (1) and the exosystem by
Ex = Ax + Bu + Pw
e = (x + Qw (3)
w = Sw
where E, A6R"", BER"", PER", C&R”", QER**, S& R,

In order to introduce the basic hypotheses, we give some concepts.

Definition 1. The singular linear system (E, A, B) 1s impulse controllable if there i1s
a matrix K such that (E, A+ BK) is regular and impulse-tree.

Definition 2. The singular linear system (E, A, B) 1s R-stabilizable if

rank[ AE —A Bl=n, YA € C".

Definition 3. The singular linear system (E, A, C) is impulse observable 1f there i1s a
matrix G such that (E, A+ GC) is regular and impulse-free.

Definition 4, The singular linear system (E, A, C) 1s R-detectable if

rank[AET — AT C'J=m=n, VA € C".

Remark 1. The above definitions do not require that (E, A) be regular, 1. e. , 1t 1s not
needed to assume that there exists a complex number s, such that det(s; E—A)+0. From
(171, it 1s easy to see that the above definitons are equivalent to those in [ 1] when (E, A)
is regular. Therefore, we may continue to use the concepts of “impulse controllable” and
“Impulse observable” for non-regular systems. But the concept of “impulse model” for
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non-regular systems does not exist.

Basic hypotheses.

H1). w=0 is a stable equilibrium of the exosystem, and there exists a neighborhood
W of the origin of R? with the property: each initial value w, €EW is stable in the sense ot
Poisson.

H2). (E, A, B) is strongly stabilizable, 1. e. , impulse controllable and R-stabiliz-

able,
rE 037 TA P

F3). (_o I,1' L0 S
and R-detectable.

Remark 2. H1)~H3) are the same as those in [ 3]. H1) is a standard assumption in-
troduced by Isidori and Byrnes'®!, H2), H3) are made to ensure the fulfilment of R1).

Remark 3. Another assumption H4), i.e. , (E, B) is normalizable, is given in [ 3] in
order to design normal controllers, In this paper, it is removed.

, [C Q]) is strongly detectable, i, e, , impulse observable

3 Main results

In [ 3], a main lemma is given which is derived from the generalized vision of the cen-
tre manifold theorem. The lemma i1s a tool to deal with the output regulation problem.
Now, we state it as follows.

Lemma 1), Assume H1) holds, and suppose there exists a control law (state or out-
put feedback) such that the closed-loop system (2) satisfies R1). Then the closed-loop
systemn also satisties R2) if and only if there exists a sufficiently smooth function y. (w),
x-(0) =0, locally defined in a neighborhood W of the origin such that

E. gléfvms(w) = f.(x.(w),w) (4)
Ozhg(xc(w)! w) (5)

Since rank E=r<n, there exist nonsingular matrices M, N&€ R"*" such that M E N =
blockdiag{I,, 0}. Let

[x“= N-'x, MAN =
Xs

CN =[C, G, ], JrCxns Xz ot w) :Mf(N[XI} u, w)

_fz (x1 » X'o 9”!“’)_4
Then system (1) is restricted system equivalent (r.s. e.) to

X, = fl(xl s XosllsW) = Apx, +Apx, +~Biu+ Piw+ f1(x1 5%, ,u,w) (6)
0=f3(x1,x2,u,w) = AnX A2232+Bzu+Pzw+fz(x19xz yULSW) (7)
E:E(x“xz W) = Crx; +Coxs + Qw1+ R (X ,X; v W) (8)

where f,, f:, h, are the nonlinear parts. From H2) H3), we know that (E,A,B,(C) is
impulse controllable and impulse observable, 1.e., | A;, B, ] and [ A}, C; ] both have
full row rank (see [1]). By Lemma 3.5.1 in[1], there exists a matrix K such that A,, +
B, K C, 1s nonsingular. Let u=Ke+v, then the system is transformed to

¥, = Anxy +Apx, + Biv+Piw fi(x %, v, w) (9)
0:A21x1+A22xz +B2V+F2W+7z(x1 9x29V5W) (10)
e=C1x1+C2x2 +Qw+h1(x11x21W) (11)

where f,(x;,x;,v, W)= f.(x;, %, Kh (x;,x,,w) +v,w) +B.Kh, (x1,x,,w), A, =A, +
B.KC;, P,=P,+ B,KQ, A,, is nonsingular, i, j=1,2. It is easily seen that the Jacobi
matrix of f; at the origin is zero matrix. Since A,, is nonsingular, by the Implicit Function
Theorem, (10) determines a unique smooth function
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X, = alx,,v,w), a0, 0,0 =0 (12)
defined in a neighborhood of the origin of R" X R™ X R%, Substituting (12) into (10) gives
A21x1 +A22a(x1 VW) +Bgv+PEW+f (I; 5(1(«17] ' Vs W)-!V w) = () (13)
i. €. »
fz(xl . a(.n YV W) ’ KH(JH 1!1(-171 &sz-) W) + V1W) = () (14)
From (13), 1t is easy to see
da{x 5V&W) =1 A i —~ 1
a(xlliv W) '1“0 =0, w=1{ - [AZZIAEI AEEI 82 AEE}PE] (15)
Substituting (12) into (9) (11) leads to a new system
X “'f}(-ﬁ! aw>—A11x1+B1V+P1W+f1(I19V W) (16)
hI(x19V W) HC1x1+Dv+QW+h1(x15V W) (17)

Where AH ""A;I AlgAgglAgl ’ Bl B1 AI*}‘AEE Bg y P P] ”"'A Agg P-; ’ C1 C} “Cgﬁg—glgzi ’
D*“" CgAgf:- Bg ’ Q QHCEAEBIP ’ and
filx,vow) =fF(x,,a(x yvsw), vow) +ALalx, ,v,w) +ALAG AL x, +

— S —

. AmA BzV"I_A]g 22 Pg (18)
h1 (xl ' Vo W) “""hi (xl 9“(1‘1 s Vo W) s V*!W) + Cga(.h 5V_&W) +C2;izﬁzlﬁglx1 _i'_
ngbgnggV—{‘nggging (19)
_?}(xla‘f'aw) :fl(xlf a(xlarV!W)a Kﬁ(xua(xuvaw)ﬂflf)-l'v,w) (20)
By (x,v,w) =h(x; ,a(X;,vyw),w) (21)

We can see that system (16,17) 1s a standard state space system. Now, we demgn output
feedback controller to regulate system (16,17). From [5], we know that if (A, ,B,) is

T-An P1
stabilizable and ( N S
lem 1s solvable by output feedback if and only if there exist sufficiently smooth functions
r(w), (0)=0, and v(w),v(0)=0, both defined in a neighbourhood of the origin of R?,
such that

J, C, Q]) 1s detectable, then the cutput regulation prob-

oniw)
ow

s(w) = }.1 (x{w), v(w)., w) (22)
0 = h, (x(w),p(w),w) (23)

Before designing the controller for (16,17), we give two lemmas:

Lemma 2. (A“ . Bl) is stabilizable if and only if (E, A, B) 1s R-stabtlizable,

Lemma 3. ([AO“ I;I , [C, Q:I) is detectable if and only if

("E O] "A P
" L0 S

. [C Q])

i1s R-detectable.
By H2), H3) and Lemmas 2, 3, there exist HER™"", G;€R™*, G, € R *such that

Y = 'Eu fjl "0y 7 - ~
s(A, +B HYC C, a( k S] o Le Ql)c (24)
By (5], the output feedback controller for system (16,17) is

——f](11$v(z2)+H(z1 75(12))512)#

G lh (z,,0(z,)+ H(z, —2(z,)) s2,) — €] (25)
ig :S(zg) ""‘Gz [EI (11 !U(ZE) + H(Z1 T R'(Zz)) azz) — 6'] (26)
v =plz,) + H{(z, — n(z,)) (27)

In the following, we will prove that the output dynamic feedback controller u=v(z,) + H(z, —
n(z,)) 1+ Ke can solve the output regulation problem for system (1). Since system (1) 1s r.
s, e. to (6)~(8), without loss of generality, we consider the closed-loop system com-

posed of (6)~(8)
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. = f1(x;,%,0(z,) + H(z, —7(2,)) + Kh{(x;,%;,Ww) s w) (28)
0= f,(x,,%,,0(2,) + H(zy —2(z,)) + Kh(x;,%; sW) y W) (29)
Z, = F,(z,,0(z;) + H(z, —2(2,)) y2,) —

Gi[hy (2, 0(z;) + H(zy — 2(23)) »2,) — h{(x; X, , W) ] (30)
= 5(2,) — Gy [k (zy,0(z,) + H(zy — 7(25)) ,2,) — h(x; X, , W) ] (31)
e = h(x;,X; W) (32

Let the linearizatton of the above closed-loop be E X . =A.x., where E,=blockdiag{!,, 0,
I., I},

A, +B,KC, A, + B, KC, B,H B, F i
A - A, +B,KC, A, + B,K(C, B, H B,F
- Gl Cl Gl CZ All Al
- G,C, G, C, ~G,(C, +DH) S—G,(Q+DF):
F— ov(z; ) __Hayz(zz)
0Z; z, =0 0z, zy =0

Au — Eu +ElH““G1(él “["EH)& Pl = F)l +§1F“G1(Q+BF)
To show (E., A.) satisfies R1), we give the following lemma.
Lemma 4., (E., A,) 1s regular, impulse-free and SEtisfies

o(E., A)=o(Au + B H)U g( hA(jl PS‘__—~ _g:_[cl Q]) (33)
Base on the above discussion, we give a main result,
Theorem 1, Assume H1)~H3) hold and suppose that there exist sufficiently smooth

functions z(w), £(0) =0, and v(w),v(0) =0, both defined in a neighborhood ot the origin

of R?, such that (22)(23) hold. Then the output regulation problem for system (1) is
solvable and the controller is a reduced-order normal controller with r+¢ dimensions.

Proof. Without loss of generality, we prove for system (6)~(8). From (24) and
LLemma 4, we know (FE., A ) is strongly stable, 1. e. s, closed-loop (28) ~ (32) satisfies
R1). By Lemma 1, (28) ~ (32) also satisfies R2) if and only if there exists a sufficiently
smooth function y.(w),%.(0) =0, defined in a neighbourhood of the origin of R?, such that
(4)(5) hold. Now, we construct y.(w) using #{w) and v(w). Let

r(w =[a"w e @ZW,ow),w) z'(w) w]

It is easy to check that y.(w) satisfies (4)(5).

Lemma 5. There exist sufficiently smooth functions 2{w),z(0) =0, and v(w), v(0)=0,
both defined 1n a neighborhood of the origin of R? satisfying (22) ~(23) if and only if there
exist sutticiently smooth functions y(w), ¥(0)=0, and p(w), u(0)=0, both defined in a
neighborhood of the origin of R? satisfying

EX 0wy = Flr(w) ,m(w),w) (34)

oW
0 = h(yx(w),w) (35)

Remark 4. In [ 3], the authors proved it necessary for the solvability of the regulation
problem that there exist sutficiently smooth functions y(w) ,y(0)=0, and u(w) ,u(0)=0,
both defined in a neighbourhood of the origin of R? satisfying (34)(35).

From Theorem 1 and Lemma 5, we get the {following theorem.

Theorem 2. Under Hypotheses H1), H2) and H3), the output regulation problem va
a reduced-order normal controller is solvable if and only if there exist sufficiently smooth
functions y(w),¥(0)=0, and g(w),u(0)=0, both defined in a neighbourhood of the ori-
gin of R?, such that (34)(35) hold.

Remark 5, Theorem 2 improves Theorem 4 in [ 3]. We have removed the assumption
of normalizability and the controller can be designed as reduced-order controller,




No.1 ZHU Jian-Dong et al. : Output Regulation ot Singular Nonlinear Systems Via Output -+ 80

Applying Theorem 2 to the output regulation problem of singular linear systems, we
can derive Theorem 4.6 in [ 6 ]. Furthermore, we can give a new reduced-order controller
as the form

_Z.]-E B }11 N E}(F#HH)+FJ“g](é_"D(P“HH)) _Zl_+ -G1_
2,0 L= G, (C, +DH) S—G,(Q+D(("— HIT)) jl_Zz.J LG €
-2, "

u=[H I — HI] + Ke

%7
where matrices [T, I" are the solutions of the regulator equations

[1S = AI;H+ B.I'+ P,
0 = C1H+ DF ‘i‘ Q
Remark 6. Without assumption of normalizability, a reduced-order controller is given
by [ 6] with the help of an appropriate system decomposition. But the system decomposi-
tion used in [ 6 | is dependent on the assumption of regularity. In our paper, we do not as-
sume the singular linear system i1s regular. So even for singular linear systems, this paper
1s also meaningtul,

4 Conclusion

In this paper, the output regulation problem of singular nonlinear systems via output
dynamic feedback i1s researched. The reduced-order normal controller is given. The as-
sumption of normalizability 1s removed and the necessary and sufficient conditions are giv-
en. By applying the result to singular linear systems, a new reduced-order controller is given.
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