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Abstract A design of robust iterative learning controller is presented. A sufficient and necessary
condition to ensure robust BIBO (bounded-input bounded-output) stability is derived for the opti-
mal iterative learning controllers when tracking arbitrary bounded output. A practical scheme of
selecting weighting matrices 1s proposed for the process with uncertain initial resetting and dis-
turbances to ensure improvement of system performance from batch to batch. An application to
the injection molding control is given to demonstrate the effectiveness of the proposed results,
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1 Introduction

Since disturbances and uncertain initialization have to be faced by many batch proces-
ses, the robust stability analysis and design for iterative learning control of these processes
are important issues. Some progresses and efforts have been made in this areal’™%, with
several applications of iterative learning control to chemical reactor, injection molding ma-
chine and robots*~"*!, Optimal design criteria have also been applied to iterative learning
control tor improved performance. Steepest-descent-optimization method of 1terative learn-
ing control was employed in continuous-time systems to minimize the L, norm of the track-
ing error, and the convergence could be guaranteed by properly choosing the step length
for each trial''*!, For deterministic discrete time systems, Amann et al.''* by means of
minimization ol one-step-ahead tracking errors and excessive input changes, have recently
proposed an optimal iterative learning control algorithm with guaranteed exponential con-
vergence under rather crucial condition requiring exact initial states resetting. However,
robust stability with respect to uncertain initials and disturbances for optimal type of itera-
tive learning controller have not been discussed.

This paper is to extend the optimal iterative learning control algorithm of Amann et
al.'% to a general batch process where exact initial resetting cannot be made and uncertain
disturbances exist. A sufficient and necessary condition to ensure robust bounded-input
bounded-output (BIBO) stability i1s established. Analysis on the selection of weighting
matrices for the cost function is made. The application to control injection molding velocity
using the introduced optimal iterative learning control is also demonstrated.

2 Problem statement
2.1 Problem formulation

The plant of interest is the following sampled-time linear system with disturbances
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X, (t+1) = Ax, (¢) + Bu,(t) + v, (1) 0<Lt<IN, k=0,1,2,

y:(t) = Cx, () + @, (1)
where x, () ER" ,u, (1) ER™,y,(t)ER?, y,(¢) is the system output at time ¢, 0<t<N, at
the kth 1teration, or the kth trial. v,(¢t) and w: (¢) denote the bounded external disturb-
ances, Note that the exact state initialization for equation (1) is not required in this work.
The robustness to initial state variation and external disturbances will be discussed in this
paper. The state-space matrices A, B, C are assumed to be time-invariant for simplicity.
[t 1s possible, without any technical difficulties, to extend all results of this paper to time-
varying systems. Based on the linear system theory, the following solution to (1) can be

deduced

(1)

1
v (1) = D> CAT"'Bu, (1) + 1, (1) (2)
I=0
1
7, (1) = CA*x,(0) + > CA™ 'y, (1) + @, (1) (3)
I=0

It can be observed that uncertainty terms of initial actions of each trial and external dis-

s /
151 5" results to the general case.

turbances appear in the plant, extending Amann et al.
Since finite time intervals of each trial are considered, equation (2) can be made in a vector

form by building supervecotors y,, u, and 5, trom y,(¢), u,(¢) and n, (z) as follows.

Y. — Gu, "|"7h (4)
where

Ty, (1) T, (0) n (D

(2) u, (1) (2)

Y, = yk; W = k: e = m:
_yk(N)_ _uk(N_“ l)ﬁ _"k(:N)_
- (B 0 0 -

G= | OB B y

CAM'B CAYN B e CB _
The supervectors are represented with omission of the argument time ¢. In the implemen-
tation of iterative learning control, a memory of y, and u, of previous trials 1s needed for
computing u,., (¢) of the current trial. The matrix G, a lower-triangular block matrix
known as a Toeplitz matrix, can be determined from its first columr. If plant (1) has rela-
tive degree of one, 7. e. CB#0, then matrix G is invertible in the SISO case. Otherwise, a
regularizing procedure like the one of Amann ez al. can be done'’™ so that GTG (or GG")
has at least one positive eigenvalue. Based on this postulation a convergence proof different
from the one of Amann et al. ' will be given.

The control object considered here, a tracking problem, is that for a reference trajec-
tory or desired output denoted by r(z), given 1<0t<CN, an iterative learning controller is
derived such that when applied to system (1) the closed-loop tracking error i1s reduced iter-
atively from trial to trial, even with the existence of initial errors and uncertain disturb-
ances.

Definition 1. An iterative learning control algorithm is causal if and only it the value
of the input at time ¢ on the (k+1)th trial/experiment is computed only from data that is
available from the (£+1)th trial in the time interval{ 0, ¢ | and from previous trials on the
whole time interval[ 0, N ].

2.2 Optimal iterative learning controller
Consider the following nominal system composed of the coefficient matrices A, B and C of

(1)
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X, (t+1) = Ax, (t) + Bu, (), 0Lt N, k=0,1,2,-
y:(2) = Cx,(t)
where X, (2) € R" ,u, () €ER™,y,(t) € R?, the variables with superscript ¢ * ’ denote the nominal
outputs, and they are initialized by zeros, that is, they would be the outputs of (1) in the ab-
sence of any disturbances and initial errors. For the reference trajectory or desired output r(z¢),
given 1<{t<CN, on the (2+1)th trial, the nominal optimal iterative learning control law is
obtained by minimizing the following quadratic performance index with respect to u+, (£)

N N—1
Jeo = D,[r@® = 5 DT QO[r() = i O 1+ D, [awen O T RW[Aue (D] (6)

where Ausr: () =u,, () —u,(t), and the weighting matrices Q(z) and R(z) are arbitrary
symmetric positive definitive for all £. The index function (6) can be rewritten in matrix
form as:

(5)

Jemm = Lr— j’k—[—l]TQI:r_ jHl] + Aty RAU (7)
where
Q = diag{Q(1),Q(2),+-,Q(N)}, R = diag{R(0),R(1),**,RIN—1)}
-ik(l)_ “r(l)-
A 70 (2) e
Ve = : = :
v, (N) | r(N).

Then finding the partial derivative of (7) with respect to u,-, one obtains the nominal opti-
mal control input

Uy = U, +R'G'QlLr— j’k—kl] (8)
However, it is observed that the algorithm (8) is not causal for computation of #,4,, be-
cause by this control law, @#,,,(¢t) would depend on values of ¥+, (') for +<<t'<CN. Fol-
lowing Amann ez al. % an equivalent form of (8) can be given below.
S)=A'SG+1){I—B[B'St¢+1)B+RG+1D ] 'B'SG+D}A+C'QG:+1DC (9
t=0, 1, »=~y N—1, SCN)=0
G () =[I+SWBR' (OB J'[A" X, ¢+ 1D +C'QG+De,t+1)] (10)
t=20,1, s, N—1,¢,(N) =0
where e, (t+1)=r(t+1)—y,(¢t+1). The nominal input update law thus becomes
() =u,(t) — [ BPK()B+R@) | 'B" X S(WA[ X (&) —x, () ]+ R ()BT, ()

(11)
This means that an extra computation effort for nominal states X, and outputs y, would be
added. For practical application of the algorithm, u, will be calculated by using real meas-
urements of x, and y, of (1) instead of the nominal ¥, and y, in (10), (11) and (12).

Therefore, a causal iterative learning control algorithm of interest can be summarized as
follows

u,., = u, + R'G' Qe (12
$e1 (1) = [ I+SWBR'()B' |7 X[AT ¢+ 1D +C'QG+ De e +1)]  (13)
t=0,1, -, N—1,¢.,(N) =0

u, . (t) =u,(t) —[BTK()B+R(t) | 'B" X S(WOA[ x., (t) —x, () | + R () B¢, (1)
(14)
where S(¢) 1s obtained by (9). Note that the proposed learning control law is optimal if 5, =
0! in (4), however, this is carried out in the presence of uncertain initials and disturb-
ances. It can be seen that the algorithm of (9), and (12)~(14) 1s causal and that u,, (¢)
1s obtained in (14) by introducing feedback action and feed-forward action (the second and
the third terms of (14), respectively) to u, (¢) of the last trial. Therefore the learning
function of the iterative learning control algorithm is carried out by combing the current
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trial results with the previous trial.

3 Robustness and convergence analysis
Theorem 1 (Robust BIBO Stability). The application of the iterative learning control algo-

rithm ot (9), and (12)~(14) to plant (1) is robust BIBO stable if and only if I+GR'G"Q and
I+R7'G'QG have their all eigenvalues outside unit disc, or

I+ R'G'QG|>1 (15)
I+GR7'G'Ql > 1 (16)
Proof, Premultiplying (12) by G and in view of (4) and e, =r-—y, one obtains
e, = € —GR7G'Qeps — A7, (17)
where An,. . =n,.,—1n,. Then using (4) and (12) gives
e.y = (I+GR'G'Q7'e, —(I+GR'G'Q 7" A, (18)
u,., = I+R'G'Q)'u, + (I+R'G'QG)'R'G"Q(r—9,.,,) (19)
Therefore, by applying standard discrete time system theory the result follows. n

Compared with the one by Amann et al.""*! the proof given here is more straightfor-
ward. The convergence of the proposed algorithm is then given below.

Theorem 2(Convergence). Apply the iterative learning control algorithm of (9), and
(12) ~(14) to plant (1), in which R and Q are chosen to satisfy (15) and (16). If all tri-
als are repeated in the sense that all x,(0), external disturbances v,(¢) and @, (t) are the
same for all trial index £, then the following convergence results hold.

gin}um = (G'QG)'G'Q(r—1n) (20)

B o

where 9° is some constant vector.

Proof. 1f all trials are repeated, it follows from (3) that there exists some constant
vector 3 such that 5, =n" for all trial index k. Iteratively using (18) and (19) one ob-
tains

k
., = (I+R'GTQG)*u, + D, (I+R'G'"QG)'R'G'Q(r—n,,, ) (22)
(=1

k
e.s1 = (I+GR™'G'Q) *e, — >, (I+GR'GTQ)'Ay,.,_, (23)
{=1

respectively., Therefore, with the assumptions and Theorem 1 the conclusions are derived

readily. L.

4 Choice of the weighting matrices and experimental results

Theorem 1 establishes the conditions for R and Q to ensure robust stability of the re-
sulting closed loop system. Injection molding, a cyclic process with uncertain initialization
and external disturbances, is a good candidate for applying the optimal iterative learning
control method together with choosing R and Q. A brief introduction of injection molding
will be given below.
4.1 Injection molding process

Injection molding 1s an important polymer processing technique, It transforms poly-
mer granules into various shapes and types of products, ranging from simple cups to preci-
sion lens and compact discs. As a cyclic process, the injection molding comprises three sta-
ges: filling (injection), packing-holding and cooling. During f{illing, the injection screw
moves forward and pushes the melt into the mold cavity. Once the mold is completely
filled, the process switches to the packing-holding stage, during which additional polymer
is added under a certain pressure to the mold to compensate tor the shrinkage associated
with the material cooling and solidification. The packing-holding stage continues until the
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nozzle, which is a narrow entrance to the mold cavity, freezes, isolating the material 1n the
mold from that in the injection unit. During the cooling stage, the polymer inside the mold
continues to cool down. At the same time, the material ts melted and conveyed to the front
of barrel by screw rotation. The process 1s then repeated.

It has been shown by many researches that precise control of some key varniables of
each stage is essential to the quality of the molded parts. Injection velocity is a key variable
during injection phase. The dynamics of the injection velocity 1s found to be nonlinear and
time-varying, and it is affected by many disturbances such as variations of material proper-
ties, injection molds and the surrounding conditions. A learning controller based on equa-
tions (9), (12) to (14) is thus designed and implemented to control the injection velocity.
The experimental set-up 1s given below.

4.2 Experimental set-up

The machine used in this work was a Chen-Hsong reciprocating-screw injection mold-
ing machine, model JM88MKIII. The machine has a maximum clamping tonnage of 88
tons, and a maximum shot weight of 128 g. Fig. 1 shows a simplified diagram of the ma-
chine in the HKUST’s advanced material lab. It consists of three main units; a clamping
unit, an injection unit, a hydraulic unit and a control unit, which is not shown in this fig-
ure. The injection velocity i1s controlled by manipulating the servo-valve SV1, and is meas-
ured by a Temposonics series 111 displacement/velocity transducer, type RH-N-0200M.
The sampling rate of the controller has been determined to be 5ms.
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Fig. 1 Simplitied schematic diagram of an injection mould machine

4.3 Results and discussion

For the sake of simplicity, let R=AI, Q=yul, where A and x are some arbitrary posi-
tive constants chosen by the designer, and p=gx/A. A and x must satisfy (15) and (16) to
ensure robust BIBO stability, This necessary condition can be met if A and u are positive
and G'G or GG' has at least one positive eigenvalue. The following problem is to deter-
mine positive constants A and p such that the resulted control system can not only reject
uncertain disturbances but also track the desired reference with the insurance of rapid con-
vergence, It follows from (22) and (23) that

k
Uy = (I+pG™'G) *uy + D oI+ oG"G)'G  (r —q,,, ) (24)

{=1
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&
e = (I+oGG") *e, — > (I+ pGGC™)An,., (25)
/=1
Theretore, a larger value of p (equivalently, a lager value of x) will be helpful in reducing

error of the first trial to reach the optimal state, 1. e. a quickly convergent rate can be a-
chieved trial by trial. On the other hand, from (13) and (14) one obtains
b (1) =AMl + S(OBB™ ' X [A", (1 +1) + uCTe, (£ + 1) ]
t=0,1,- . N—1, ¢, (N) =0
u, (1) =u,(t) — [ B'K(WB+ A [T'B" X S(HOA[xp 1 (1) —x, (D ]+ 2A"B"¢,., (8)
(27)

It can be seen that the larger value of p (larger value of ) leads to the larger feedforward

(26)

action on , ., {¢) through¢,., (¢}, making the control system less sensitive to the variation
of the reference signal. In addition, a strong feedforward action tends to accumulate sto-
chastic errors resulted from various uncertainties and external cdisturbances, resulting
strong fluctuations in the control input. This can be demonstrated easily by application to
injection molding control. The designed iterative learning controller is first tested with p=
[.0, which is a critical value. The input signal, 1. e. , the servo-valve opening 1s arbitrarily
set to be 10% , as shown by the short dash line in Fig. 2(b). The control results are plot-
ted in Fig. 2, where Fig, 2(a) shows the injection velocity (output) and Fig. 2(b) shows
the corresponding servo-valve opening (input). It is observed that the control response bhe-
comes oscillatory with the increase of the cycle number 2. This is caused by the strong
feed-forward action, With the existence of disturbance and model mismatch, a large p leads
to strong feedforward action and weak feedback action, weakening the error reducing capa-
bility of the learning controller.
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Fig. 2 Injectton velocity control with p=1

The controller 1s thus modified with varying values ot g. For the first cycle, the input
is again set to be a constant value, 10%. The Riccati gain and the feedforward terms in
(13) and (14) are then calculated with p=1. 0 to make the control response converge rap-
idly. For the following cycles, p are set to decrease exponentially with the increase of the
cycle number £, i.e. p=0,6""". The results are demonstrated in Fig. 3(a) and Fig. 3(b).
It is obvious that the control oscillation has been eliminated with the implementation of the
proposed modification. The control response quickly converges, and the control system is
stable with increase in the cycle number. The injection velocity follows a step set-point
profile rapidly; this is an inherent advantage of the iterative learning controllier.
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Fig. 3 Injection velocity control with p=0. 6*~!

5 Conclusions

The robustness and convergence 1ssues of the optimal iterative learning control algo-

rithm based on minimizing quadratic performance criteria have been considered in this pa-
per for the processes with uncertain initializations and disturbances. A sutficient and nec-
essary condition has been established to ensure robust BIBO stability of iterative learning
control system when tracking arbitrary bounded desired output. Performance improvement
is made by modifying weighting matrices of the quadratic cost function. The successful ap-
plication of this algorithm to injection molding process makes us believe that the optimal
iterative learning control can be applied to other industrial batch plants, especially proces-
ses with uncertain initials and disturbances, by appropriately adjusting the weighting ma-
trices of the quadratic index.
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