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A STUDY OF OPTIMIZING DESIGN OF CIM
SYSTEMS WITH UNRELIABLE MACHINES
AND FINITE BUFFERS

SHU Songgui WANG Chenghong

(Institute of Automation, Chinese Academy of Scien.zs, Beijing 100080, China)

Abstract On the basis of equivalent workstations, the optimizing design problem of
CIMS has been studied and analyzed in different casss, such as with or without buffers
before the first and after the last stations, and with or without constraints of resources. An
example is given for illustrating the application of the proposed method.
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1 INTRODUCTION

There have been a lot of research papers on CIMS in literature up to now. Most of them only
dealt with the problem of two stage systems, a few studied three stage transfer lines, and the » -stage

(n > 3) problems are rarely seen. Almost all methods used in these papers are based on approximate
solution and the calculation amount of these methods is very large. Only several papers discussed

the buffer optimizing problem [1,2]. Papers on the optimizing design problem of CIMS have
appeared very seldom.

On the basis of two papers [3,4], we use the equivalen: workstation model and the equilibrium
principle of workpiece flow to study the optimizing design problem of CIMS. Under the condition
that there is no workpieces to be destroyed or rejected in the middle of the production line
optimizing design has been studied and accurate analvtical solutions have been obtained,
respectively, in the following cases: (1) there are and there are not identical buffers before the first

station and after the last station, (2) bufters in the middle of the CIMS have different capacities, and

(3) the total resource is constrained or not.

OO

Fig.1 Serial CIMS structure
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2 MODELING AND ANALYSIS OF SERIAL REPAIRABLE CIMS

In order to get ready for optimizing design of the CIMS, we will use an equivalent workstation

model on the basis of a published paper [4] to derive system effectuality (referred to as efficiency in
some literature) and take it as the objective function of optimizing design.

Suppose that there 1s a serial processing system with »n workstations as shown in Fig.1, where
M . represents the ith workstation and S, represents the ith buffer.

2.1 Assumptions

In the following, we present six assumptions and take them as the basis for modeling, analysis,
and design thereafier.

1) When workstations fail (including failures in buffers), they can be repaired immediately and
after repair they can completely recover normal functioning. Processing time of the workpieces,
failure time, and repair time of the workstations are of negative exponential distribution with
parameters w,, A, and u,.

2) Transportation takes negligible time compared with processing time of a workpiece.

3) When a buffer is full of workpieces, the workstation before the buffer will be blocked and

stop working automatically until this buffer has an empty place.

4) When a buffer is wholly empty, the workstation after it will be starved and stop working.

5) During the idle times of starvation and blockage, any workstation would not fail.

6) The buffer before the first station and the buffer after the last station may have equal
capacities or their capacities are infinite (i.e., the first station is not starveing and the last station is
not blocked).

2.2 The states of buffers
According to the analysis in paper [4], four states are picked from (K, +1) states of a butfer

for constructing and analyzing the equivalent workstation.

- p, S (- p,
Empty £, =— "ifjl"; Full Pxfj =_.__.__..p' ( Kf_l')
I-p; l-—p,.'
(1-p) | ok (1)
Non - empty PE-,..—:l—Pn;=.p_;.._._%_; Non - full PE=]_PKE=_1____“’K{__I
| d | -p;'

where K, represents the capacity of the ith buffer (including one storage unit in the workstation),

The average inventory level (level of storage) in the ith buffer 1s

K, K, +1 K, +2
Mm:Z kfph=£.f_§£f_+_l.l_&x_r__”(fﬁ._,kj =12,---.K.. (2)
k, =1 l_pf'-pii + 0

and p, =w,/w

I+1

2.3 Modeling and analysis of the equivalent workstation

An equivalent workstation is a station where the raw materials before it are not lacking (i.e, the
upstream buffer is not empty) and it should not be blocked by the workpieces after it (Le., the

downstream is not full). For a given workstation between buffers, the corresponding equivalent
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workstation includes not only the given workstation but also the influences of two adjacent butfers

on it. According to analysis in paper [4], the availability of the ith equivalent workstation can be

shown as

A =P =P—P-P. =BP, ( 1) represents normal working probability) (3)

0i-1Y Ki @

where B, = P~—P— represents the availability of the front buffer and the back bufier of the ith

0(i-1) K2

workstation, and P, represents non-failure probability of the ith workstation (including normal

working, starving, and blocking).
Supposing that P,, represents repair probability of the ith workstation, we have

P,+P, =1 (4)
According to Assumption 5), we can derive {4]
3
Chimyx
.+ A D.
#I 1 '? (5)
A B,
Py = ——t—
H + A4, B, J
The steady-state productivity (production rate and throughput) of the ith equivalent workstation 1s
. B.
W.=Aw =P.o, = Mt Lod it AR (1) workpieces/2) hour) (6)
H;, + A, B,

The rated (design) productivity of the jth workstation is
W Wi + A4 B,

w, ba
A4, K, B, (%
The actual processing time per workpiece in the jth equivalent workstation is
1 A B.P,
T =i _Zilai 7
" w, W,W 7
Fig.2 Equivalent production line
The average time that the ith equivalent workstation processes one workpiece is
|
T:ﬁ - —[:V_- ‘ (8)
The ettectuality of the ith equivalent workstation is
T. W B.
E;= 'u___r_z #: i :A,: (9)

. @, W, +AB, -

i !
From the above formulas we can see that effectuality of a single equivalent workstation equals
1ts availabihity.
2.4 Modeling and analysis of a series equivalent production line

Connecting n equivalent workstations in series, the serial production line in Fig.1 will change
into one equivalent production line as shown in Fig.2, where P, is as shown in (6).
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We define the eftectuality of a system as the probability that it is in the states being equivalent

to the full production rate at some moment under the provided conditions. In other words, the

effectuality of a system equals the mean value of every equivalent workstation effectuality, that is,
i ] n ] W
Ey = Z o Z Ty
=1 @[ o W,

L 1 1 2
> —==—> E (10)
=1 W, N

This formula is a main objective function for the system optimizing design.

n

3 OPTIMIZING DESIGN PROBLEM OF THE SERIAL CIMS

On the basis of modeling and analysis indicated above, we can study the optimizing design of
the system. First, according to the conservation (equilibrium) principle of workpiece flow we can do
general optimizing design for the system under the different buffer conditions. Second, we will get
the maximum value of the objective function (system effectuality), namely, generalized optimum
solution under the constrained resources.

As far as the system control is concerned, when some buffer is full, the workstation before it

will stop working automatically to avoid a workpiece being lost in the middle of the production line

(Assumption 3 can be carried out).
Considering economy and optimal operation of the system, every workstation should aviod idle

time due to starving and blocking as far as possible. Using the conservation of workpiece flow, from

Eqgn.(6) we can get

‘ _ (i=12,.,n). (11)

The above equation is the necessary and sufficient condition that the production line will work
continuously as a homogeneous line does.

Comparing Eqn. (10) with Eqn. (11), we can see that the optimizing design problem of a

n 1 W
system is to solve the maximum value of E_ or ZEIf or Z —.

.

i=] i=] i
3.1 General optimizing design problem
Given the intermediate buffer’s capacity ( K, ), the optimizing design problems of the system
are discussed according to the capacity of the buffers before the first and after the last workstations,

respectively.
1) Suppose that the buffers before the first workstation and after the last one have the same

capacity as the intermediate buffers, and raw material input and product output are stochastic. Eqn.

(11) may be written as

Wa' =WI =W2 =”':Wn =Elml =”'=Ena)n
:..___&-:__ﬂ—.——-:-.-:__@ﬂ_! (lla]
L 4, 1A L A,
— —  — 4+ — +
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| | N/ 1
pfz__"f.’f_.:fm__.(_l_.J,iJ/ . ‘) (12)
W, E, B, u \ B,.. M.

When K, is given, we may get the following theorem.

and

Theorem 1. When the system productivity W_=W., is given and every buffer’s capacity KX,
is the same, the system effectuality £_ reaches its maximum value (optimum solution) at the points
of p=p,,,=land A, /u =4, /u,,.

Proof. From Eqn. (1), we can prove that B, = B,,, = B=(K /(K +1))* when p, = p,,, =1,
and at the same time B reaches its maximum value (when p, = p,,, #1). From Eqn. (12), we can
see that A, /u =A,,/u,,, is also the necessary condition of the optimum solution when
p,=p,,,=1and B, =8B, . Again, from Eqn. (11), we can see that when @, and A,/ u, are fixed

and B, reaches its maximum value, E; reaches its maximum value and E_ in turn reaches its

maximum value (see Eqn.(10)), which 1s the optimum solution. This completes the proof.

2) Suppose that the first workstation is never starved and the last workstation is never blocked.
In this case, the optimizing design problem is more complicated.

Except for the first and the last workstations, we first solve the optimizing design problem of

the other workstations in the middle according to the method in Theorem 1, and then revise the

solution from the two ends.

Because of the first workstation not being starved, B, = PEII- and B, = PF;PE; = P, PE,? P‘E}?

= p, Py, B, . Inorder to increase £, let p, <1, thatis, let w, < w,. Because of P ki <1, B >B,.

Let K, > K, = K, then we can get

2’! AHI
Lol (13)
ﬂr JuHI
B=p_ =1P i
e T e ¢ B =g =l
] 14
E|=A1=—1—'T=E"=An and Ct)]=ES =, . (133)
.__.._+_1- |
B,

The first workstation and the last owrkstation are symmetric, and the ith workstation and the
(n—i+1)th workstation are also symmetric. Finally, we can get the suboptimum solution of the

system by using Eqn. (10).
3.2 Generalized optimum solution
According to the models and analysis results above, by increasing the buffer’s capacity K, we

can increase system productivity W, and system effectuality E_.But K, and W, are restricted by

the investment and cannot be increased unlimitedly. So this is a generalized optimizing problem.

Use Eqn. (10) to put the optimizing model of the system as follows

1 &G W 1 s
max £ =— —=—> E_, 14-1
n; w, ’752:1‘ ( )
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nt}h

s.1. (a,w)+ Z bK)=<C. (14-2)
= i=A

where C is the upper limit of the total system investment (including workstation and buffer cost), a.

is the unit design productivity cost of the ith workstation, and b, is the cost per storage unit in the

ith buffer. The sign “+” in Eqn.(14-2) represents that there are identical buffers at both ends of the

production line. The sign “—” represents that the first workstation is never starved and the last

workstation is never blocked.
According to Theorem 1, when p, =1 and K, = K, we have [4]

K 2
B =B =B,==8 = . 15-1
<m0 s
When the resource is used up, Eqn. (14-2) becomes equality. When a, =a,b, =b,w, =w and
K, =K, we have
C — A
K=_2§_w_=__l__ C-n .}_+..fl_ _ (15-2)
(ntDb (nth)b B u,
Solving Eqn.(15-2), we get
B = - r . (15-2a)
oy € gl 4
naw \(nthb J7,
Table 1
I B P Remrks
A, 0.001 0.002 0.002 0.001 n=3
p, 0 02 0.04 0.04 0.02 W = 10 workpieces/hour
A,1p, 0.05 0.05 0.05 0.05
Table 2
Clasificatin | ___productontine | k| o |

General Homogeneous production line Eqn.(11a) Eqn.(10) 0.625155
optimizing 0, =1,B, = ( Ki \ 16.125001 (optimum solution)
design
The first station is not starveling, Let K, =K,=4 wy =11.63420 = w; 0.718406
the last station is not blocked | Ky =K,=6 w, =15.96417 = w, (suboptimum
@, =16.12500 solution)
Generalized Homogeneous production line 13.83333 0.722892
optimizing a. =6,b, =3, ¢=305 (optimum solution)
design The first station is not starvehng, Let K,=K;=4 wy =11 01885 = s 0.840397

K,=K;=6 @, =12.55285 = w, (suboptimum

the last station i1s not blocked
a; = 6,bj == 3,C = 5035

@, =12.60 solution)
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Substituting Eqn.(13-2a) into Eqn.(15-1), we can get the solution for K. Here K has three
roots, but K must be a positive integer. So, we can try some positive integers to find out solution
K and need not solve the cubic equation.

Discussion
(1) If the system is absolutely reliable, let A/ u =0 . In this case we can also get the optimal

solution so long as we put 4 4 =0 1nto related equations.

(2) When the first workstation is never starved and the last workstation is never blocked,
except for taking a negative sign of (n%1) in the equations above, we should deal with the two end

workstations with the special method as before.

4 CALCULATION EXAMPLE (UNDER THE CONDITION OF
CONSERVATION OF WORKPIECE FLOW)

Example: Suppose there is a 5-stage repairable CIMS and every buffer’s capacity is the same
(including the input buffer and the output beffer). The system productivity and its reliability data are
given in Table 1. With K, being fixed, for general optimizing design, generalized optimizing design,
with or without buffers at both ends of the system, and the other cases, we solve:

(1) Every workstation rated (design) productivity o, ;

(2) The maximum system effectuality £ (i.e., optimum solution).

The solutions are listed in Table 2 (detailed calculation can be seen in Ref. [5]).

S CONCLUSION

On the basis of the equivalent workstation and under the condition of conservation of
workpiece flow, this paper presents detailed researches on the optimizing design problem of the

system and gives some good results. These results can be applied to production practice directly.

The results may be summarized in seven points as follows:

1) The necessary and sufficient conditions of the CIM system under the conservation of the
workpiece flow for optimizing design are p, =w, /o, , =1 and

A A (i=12,n-1);
Hi  Hin
2) The methods of the CIMS optimizing design is discussed and the definition of the system
effectuality [Eqn.(10)] is given;
3) Optimum solution is obtained by taking the system effectuality (or productivity) as the
objective function;

4) With K, being fixed, the general optimum solution of the system is obtained;

(F¥: 212 )
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5) In the case of the resource being constrained, the generalized optimizing design model is
derived and its optimum solution 1s given;

6) The application of this method is illustrated with an example;

7) The optimizing design method given by this paper can also be applied to other similar
systems (such as IMS, DEDS, and CPMS).
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