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MODELING AND ANALYSIS OF
INTELLIGENT MANUFACTURING SYSTEM
CONSISTING OF TWO REPAIRABLE
MACHINES AND FINITE INTELLIGENT
BUFFER IN SERIES’

SHU Songgu1  WEI Wei

(Institute of Automation, Chinese Academy of Sciences Beijing 1000830, China)

Abstract A new model is proposed for analyzing the intelligent manufacturing
systems (IMS) consisting of repairable machine and finite buffers 1n series. The
unreliable machines stop during times to repair and the finite storage buffers lead to
blockage and starvation due to the random machine operation times of failure and repair
times. Then the machines operate in interrupting state and make the problem of
modeling and analysis for the system very difficult to treat. An equivalent workstation
without starvation and blockage is constructed by means of quening theory of the
discrete Markovian process. Connecting all the equivalent workstations in series, we get
the new model of the whole system. Thus the interrupting discrete system has been
converted to a continuous production line which can be solved by ordinary differential
equations on the normal way. Then from the law of conservation of working piece flow
in the transfer line, some explicit expressions for the measures of performance for the

systems 1n steady state have been denived (such as system production rate, efficiency,
expected in —process inventory, etc.).
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1 INTRODUCTION

The unrehable multistage manufacturing system with random processing times and finite
bufters 1s a special kind of large scale systems. It is subject to interruptions in operation due to
blockage and starvation in the transfer line and very difficult to treat because of its large state spares

and undercomposability by nature.

So far there are some researchers have done a lot of good works about this problem with
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difterent given conditions 1n different ways. But most of these works belong to two—stage systems,
such as : (1) for transfer lines with deterministic processing times {"*; (2) for continuous materials
flow through the lines V% and (3) with random processing times ' ¢!, As for three—stage transfer
lines only a few papers have been published ! * . For more than three stages, the problem of
modeling and analysis can be solved only in very strict constrained cases by approximate methods,
such as decomposition approaches !'* ' or aggregation approaches ' "*\. However almost all these
methods are rather complicate in computations and not convenient to practical uses.

A complete new method is proposed in this paper on the base of “equivalent workstations” !'*
1 for solving an unreliable intelligent manufacturing system (IMS) with random processing times

of discrete workpieces in stations. For the purpose of simplification and explicitness, we limit the

problem to two—stage transfer lines and compare the numercial results with those of Gershwin and

Berman [6]. Obviously this new method i1s more simple in calculation and very easy extends to

multistage transfer lines.

2 ASSUMPTIONS AND MODEL DESCRIPTION

Consider an intelligent manufacturing system of two workstations M, with intermediate

buffer £, connected in series as shown in Fig. 1.

O

Fig. 1. Two-machine IMS

The following assumptions are given for analysis in this paper:

1) Any failues occured in the workstations can be repaired without delay. The processing time,
the time to fail, and the time to repair are distributed exponentially with parameters ®, (production

rate), A, (failure rate) and W, (repaire rate).
2) Buffers are always reliable (the failures of buffers may be included in the adjacent
workstation if any). Transformation of working pieces takes negligible time compared to the

processing time.
3) The first workstation is never starved, and the last workstation is never blocked.

4) The operating workstation is controlled to stop automatically while either starvation or

blockage occurs.

5) The stopped workstations are not vulnerable to fail, because they are not operating.

3 ANALYSIS OF THE INTERMEDIATE BUFFERS'"*'™

Consider an intermediate storage buffer as an isolated system between two reliable stations as

shown 1n Fig.2.
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Fig.2. Transitive state diagram of bufter

Where K indicates the capacity of buffer. Here K includes one unit in the workstation.
Let P, present the steady state probabilities of the jth state of buffer, and p=w, /w0, , then

K
Y P =1 (1)
j=0
Al-p
and P =—";’-f-(--,-;:;)- 2)
—p
Obviously, when p =1,
]
P = 2a
7 K+l (2)
For constructing the equivalent workstation in the next section, we need only the following two
states:
] 1-p*
Py =1-P, = e (unfull)
_ 1-p*
Fy =1-F, = Blg:'_’";;;_) (unempty) (3)
Then the average in — process inventory in the buffer can be calculated as following:
___ 1 3+ K K+l + K K+2
Mﬁ':lPl +2Pz+'“+KPK =E—"'£—"'—)il—"—'“—i%——' (4)
I-p-p™ ™ +p™”

4 CONSTRUCTION AND ANALYSIS OF THE EQUIVALENT
WORKSTATION

For generalization, considering the effects of two adjacent buffers on the ith workstation, we
have five independent working states probabilities as following:
1) M, in the normal working states with probability:

P =P—P;P,=B.P,

ai o(i-1)" K, i~ ai

where P, 1s the reliable state probability of M, B, = P—_P,, 1s the availability of the adjacent

ogi-1)~ &1

butfers relation to ith workstation.
2) M, stopped due to blockage on downstream buffer with probability:

P—P Kr:"P ai

0(i-1)
3) M, stopped due to starvation on upstream buffer with probability:
R}(i—l)P J;Ru
4) M, stopped due to both starvation and blockage simultaneously with probability:
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PU(!-!)PKIPM
5) M. stopped on repair with probability: P,

Obviously, sum of the above five state probabilities is the total probability, i.e.
[‘%E?ffipﬁf_f + B—F + E}(E—I)PJ& + R}{E-I)sz]}?ﬁ + B:-f =1 (5)

0(i-1)" Ki

It is easy to prove that the sum of the 4 terms in bracket of (5) i1s equal to one, then, we have

P +P =1 (6)
The equivalent workstation is defined as a reliable machine which can process pieces without any
starvation from emptiness of unstream buffers and blockage from fullness of downstream bufters.

Then from view point of equivalent workstation, only the first term of eq(5) is necessary for
consideration. Since only the steady state solution is required for IMS problem, so we can obtain the

equivalent workstation availability which is defined as (see above)
A=P =P—P.P. =B.P, (7)

0(i-1) i* ai

L]

in which, P, should be determined.

Based upon assumption (5), the failure occurs only in working machine, so the processing
state and repair state of machine i will transfer between P, and P, (not P, and P,;) as shown

in Fig. 3.

Fig.3. Equivalent repairable workstation

From Fig.3, we have
R:; =A,P, -l b (8)

it ai

For the steady state solution, let P’ =0, and take care of eq(38),
- ABP, BA(1-P,)

’ i“i%al _
R

K, Hi Hi

p =M (9)

The efficiency (effectuality) of ith equivalent workstation is equal to its availability, 1.e.

B.
E, =4 =P, =—t"— (10)
K+ 4,8,
The manufacturing rate of the ith equivalent workstation,
(0,— #i B i (1 1)

W =w +A =————r
l I I tui+/1iBi

The average manu facturing time for each piece in the ith equivalent workstation,
T, =1/W, (12)
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5 MODELING AND ANALYSIS OF TWO - STAGE REPAIRABLE
INTELLIGENT MANUFACTURING SYSTEM

Although the equivalent workstation method can be used for multistage transfer lines, now we

take two - stage IMS as an example for explanation. Connecting two equivalent workstations 1n

Fig. 4. Equivalent two-stage IMS

series as shown in Fig. 4.

From the law of conservation of workpiece flow in the transfer line and eq(11), we have
0, 1, B
Woew = LB O:HaDy (i =12) (13)
My +/1131 H: +A’232
Solve the above equation, we get
o, =W,(/B,+4 /1) (132)

and p=0 /o, =(’11/4U1 )/(’12/1“2) (13b)
(13b) means that p is independent of K, (capacity of the buffer). It is also the necessary and

sufficient condition for a two-stage repairable IMS with conservation of material flow.
The average processing time for each workpiece in the two workstations:
T =1/w +1/w, (14)

P

The average stayed time (including blockage, stacvation and repain) for each workpiece in two

workstations.
T, =YW, + W, =2fW, (15)

The system efficiency (effectuality)
E =T, [T, =W, [2(Jo, +,) (16)

6 NUMERICAL EXAMPLES

EXAMPLE 1

Take the standard parameter values from computational experience by S.B. Gershwin and O.
Berman Ref]6] as an example and check the results with those of [6].

Table 1 Standard parameter values

,. 2
o :
A 1
2 6

Find the manufacturing rates of the workstations, the system production rate, system efficiency

(effectuality) and the average in-process inventory.
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Solution:
B, =P, =(1- p,)/(1- p,)=0.9688

B, = pB, =0.4844

W, = (o, 1,4, )/ (11, + A,B, )=0.6126

W, =(w,u,2,)/(u, + A,B,)=0.7323

which satisfied with Fig[2, 3, 4] of Ref]6).

W, =mmW, =W, =0.6126

M, = (p—(K +Dp* + Kp**? )/(1 ~p—p"t 4 pkt? )= 0.9677

E =W/ 2(1/‘”1 +1/ @, )= 0.4595 which satisfied with Fig.5 of [6]
EXAMPLE 2

Design a two-stage IMS with given parameters: A4, =3, A, =4, u, =5, u, =6, and the
average system production rate W_=10 pieces/hr. (required).

Find the workstation manufacturing rates o,,®, , the system efficiency E., and the average

In-process in-ventory MK also choose the reasonable storage capacity K of the buffer.
Solution

P = (’ll /1, )*(4”2 /4, )= 0.9

Table 2 Calculating table

3 4 Kk | 8 | w
0.7880 | 0.839 1
0.7092 | 0.7558 B, 0.9
18.6900 | 17.9078 16.0

20.7667 | 19.8976 18.6176 17.7778
0.5083 0.5305 0.5670 0.5938

1.3687 1.7903 MK 0.3080 9.0

Form table 2, we see that E_ increase with K, but the rate is rapidly decreasing for K >3.

K 2
B, 0.2710
B, 0.2439
42.9004
0, 47.6671
E, 0.2214
MK 0.9299

£

So K =3 is the reasonable storage capacity.

7 CONCLUSION

The main contributions and findings are:
(1) The excellent achivement is to connect the interruption operations due to finite buffer and
unreliable machines into continuous production line and make the very difficult problem being easy

to solve by ordinary mathematical tools.

(2) Reducing the dimensions of the storage buffer from (XK +1) states to two (£, and Py )
by means of Markov chain and reducing the dimensions of the workstations from five to one, thus
simplify the calculation very much.

(3) By the law of conservation of workpieces flow, the necessary and sufficient conditions

without any lost workpieces in the transfer line have been obtained as shown in eqn(13) and (13b),
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which are very useful for economical and optimal engineering design.

(4) From the equivalent workstations andeequivalent IMS, a set of performance measures have
been derived in explicit analytical expressions, such as the station and system average production
rates, the expected in-process inventory, efficiencies (effectualities), and time to process pieces and
stay in the line. All these derived formulas can be used directly for theoretical analysis and practical
engineering design.

(5) The results of numerical example can justify the proposed model by comparing them with
those of Ref[6]. Example 2 is given for illustrating that this method is convinient to practical
engineering design.

(6) This equivalent workstation method can be easily extended to multistage transfer line

analysis and design.
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