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Abstract Causation plays a critical role in many predictive and inference tasks.
Bayesian networks (BNs) have been used to construct inference systems for diagnostics
and decision making. More recently, fuzzy cognitive maps (FCMs) have gained consid-
erable attention and offer an alternative framework for representing structured human
knowledge and causal inference. In this paper I briefly introduce Bayesian networks and
cognitive networks and their causal inference processes in intelligent systems.
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1 Introduction

In many real-world applications, we use the available information for making analysis and
reaching decisions.Data analysis and decision making processes can be broadly considered as
a prediction process. In general there are two types of tasks in such processes, which require
different methods:

1) Classification which is concerned with deciding the nature of a particular system given
the features, which usually produces labeled data;

2) Causal prediction which is concerned with the effect of the changes in some features to
some other features in the system.

For instance, to classify a car, we may use color, size, and shape as its features. Based on
the features, we may reach a conclusion that a particular car in the image is a passenger car or
a bus. In many applications, we may use classification to gain new knowledge. For example, in
searching for anti-AIDS vaccine, researchers use data from certain population that has exposed
to HIV but not developed AIDS to find a procedure to develop effective anti-AIDS vaccine. In
such problems the process uses features for prediction and does not concern the effect of the
change in the feature to the system. Classification has been a major topic in machine learning.
Many techniques have been developed for the classification and pattern recognition problem,
e.g., neural networks, decision trees, various learning paradigms, such as competitive learning,
supervised learning, reinforcement learning, etc.

The second major task is mainly related to Causal Discovery or Causal Inference which is
concerned with the change of features in the prediction (or inference) process, e.g., the effect of
a new mmvestment strategy to the profits of the investor; the impact of the increased cigarette
tax on the health of youth; the influence of wider exposure to violent video games on social
behavior of high school students. The changes in these examples would directly or indirectly
alter some of the features in the data. To know the effect of changes, we must have some
mechanisms that can discover the cause and effect relations from the data set. In this paper

I will briefly discuss causality and two major approaches to the problem of causal inference:
Bayesian networks (BN) and fuzzy cognitive maps (FCM).
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The Bayesian network!® is a causal inference model that represents uncertainties with a set
of conditional probability functions in the form of a directed acyclic graph (DAG), in which
each node represents a concept (or variable), e.g., youth, health, smoking, and links (edges)
connect some pairs of nodes to represent (possibly causal) relationships!!~3!. Associated with
each node is a probability distribution function given the state of its parent nodes. Since the
early 80s research on Bayesian networks has gained considerable interests. Bayesian networks
provide a convenient framework to represent causality, e.g., rain causes wet lawn if we know it
has rained. Bayesian networks have found some applications. For instance, Andreassen et al.
have developed an expert system using the Bayesian network for diagnosing neuromuscular
disorders!4); based on blood types Rasmussen has developed a system, BOBLO, for determining
the parentage of cattlel5l; Binford and his colleagues have used the Bayesian network for high-
level image analysis(®7); and the PATHFINDER system for pathology!®.

About same period when the theory of Bayesian networks was introduced. Kosko!®! pro-
posed the basic structure and inference process of the Fuzzy Cognitive Map which was based on
the Cognitive Map developed by Axelrod!1%). The FCM encodes rules in its networked struc-
ture in which all concepts are causally connected. Rules are fired based on a given set of initial
conditions and on the underlying dynamics in the FCM. The result of firing of the concepts
represents the causal inference of the FCM. In FCMs we are able to represents all concepts
and arcs connecting the concepts in terms of symbols or numerical values. As a consequence,
we can represent knowledge and implement inference with greater flexibility. Furthermore, in
such a framework it is possible to handle different types of uncertainties effectively and to com-
bine readily several FCMs into one FCM that takes the knowledge from different experts into
consideration!!ll. The theory of FCMs represents a very promising paradigm for the develop-
ment of functional intelligent systems!12~15!.

2 Bayesian Networks

Causality plays an important role in our reasoning process. Let’s look at the following two
simple examples:

1) “When it rains the lawn will be wet.”

2) We know that speeding, illegal parking, drink-drive, etc. violate traffic regulation which
can incur a fine by the police. “If John speeds he may get a fine.”

A functional intelligent system must have the ability to make decisions based on causal
knowledge or causal relationships. Based on causal knowledge we are able to causally explain
probable outcomes given known relationships between certain actions and consequences, e.g.,
“smokers are at a higher risk of contracting lung cancer” is based on the probable cause (smok-

ing) of the effect (lung cancer).

2.1 Causal Inference
Traditional expert systems consist of a knowledge base and inference engine. The knowl-

edge base is a set of product rules:

IF condition THEN fact or action

The inference engine combines rules and input to determine the state of the system and
actions!'®l Whereas a few impressive rule-based expert systems have been developed, it has
been demonstrated that it is difficult to reason under uncertainty. For instance, when we say
“smoking causes lung cancer” or “higher inflation figure causes interest rate to rise” we usually
mean that the antecedents may or more likely lead to the consequences. Under such a situation,

!This is most commonly used name. In the literature it is also called by different names, such as, causal
network, belief network,influence diagram, knowledge map, decision network, to name a few.
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we must attach each condition in the rule a measure of certainty which is usually in the form of
a probability distribution function. Deterministic rules can also in many cases lead to paradoxic
conclusions, for instance, the two plausible premises:

1) My neighbor’s roof gets wet whenever mine does.

2) If I hose my roof it will be wet.

Based on these two premises, we can reach the implausible conclusion that my neighbor’s
roof gets wet whenever I hose mine. To handle such paradoxical conclusions we must specity
in the rule for all possible exceptions:

My neighbor’s roof gets wet whenever mine does, except when it 1s covered with plastic, or
when my roof 1s hosed, etc.

Bayesian networks offer a powerful framework that is able to handle uncertainty and to
tolerate unexplicated exceptions. Bayesian networks describe conditional independence among
subsets of variables (concepts) and allow combining prior knowledge about (in) dependencies

among variables with observed data. A Bayesian network 1s a directed graph that contains a
set of nodes which are random variables (such as speeding,

illegal parking), and a set of directed links connecting pairs of
nodes. Each node has a conditional probability distribution
function. Intuitively, the directed link between two nodes,

say, A to B means that A has a direct influence on B. Fig.1

shows a simple example.
In Fig.1 all three variables have influence on each other in different ways: A has an influence

on B which in turn has an influence on C'; conversely, the evidence on C will influence the
certainty on A through B;or given evidence on B, we cannot infer C from A and vise versa,
which means that A and C are independent given B or the path has been blocked by the evidence
on B. For instance, let A stand for drinking, B for traffic accident,and C for fine. If we know
that John has drunk, if he also drives he will likely get involved in an accident, and consequently
get a fine. On the other hand, if we know that John has received a fine we may infer that John
may have involved in an accident which may be a result of his drinking problem. However,

drinking and getting a fine become independent, if we known whether John has involved in a

traffic accident,
Fig.2 (a) shows another example. In

this case A will be the cause for both B o o o

and C. On the other hand 4 and C may

influence each other through A. We may
(a) Diverging connections (b) Converging connections

Fig.1 An example of a sim-
ple serial connection

say that drinking (A) may cause traffic
accident (B) and fight (C).If we know e o
nothing about A, knowing that John has

involved in a traffic accident may trigger

us to infer that he might be drinking too
much, and in turn we may also speculate that he might also getting into a fight. In this case

B and C are dependent. Now, if we were told that John was not drinking, the fact that John
has involved in an accident will not change our expectation concerning his drinking problem:
consequently, traffic accident has no influence on fight.In this case B and C are independent.
In Fig.2 (b), both B and C have a direct influence on A. traffic violation (B) or fight
(C) can result in a fine (A). If we know nothing about the fine, traffic violation and fight are
independent. If we know only that John has received a fine, we may infer with some certainty
that John has committed traffic violation or got into a fight. Now we are told that John has
indeed committed traffic violation; our belief in John also got into a fight will reduce; that
1s, B and C become dependent. This type of reasoning is called explaining cway3! which is
very common in human reasoning process that involves multiply causes. For instance, when

Fig.2 Simple Bayesian networks
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diagnosing a disease the doctor may use the obtained evidences, e.g., a lab report, to eliminate
other possible disorders.

2.2 D-Separation

In the above examples we have discussed possible ways evidence can traverse the Bayesian
network. We have found that given evidence on certain variables (nodes) and certain connections
conditional relationships can change between independence and dependence. In general, in order
to pertorm probability inference for query q given n variables,v; vs - - - v, that are related to g,
we must know 2" conditional probability distributions, P(gq|lvi Avg, A---Avy,), P(qlvi AvaA---A
- ), -+, Pg]—v1 A —v2 A -+ A —w,,).For large systems, this can be intractable. Furthermore,
most of the conditional probabilities are irrelevant to the inference. Theretfore it is necessary to
reduce the number of probabilities.

The Bayesian network provides a convenient representational framework. Indeed given
a Bayesian network, it will be beneficial if we can find a criterion to systematically test the
validity of general conditional independence conditions.For instance, if we are able to determine
that in a given network a set of variables V is independent (or dependent) of another set of
variables U given a set of evidence E. This will reduce the conditional dependence in general,
hence reducing the amount of information needed by a probabilistic inference system.

Fortunately, such a criterion is available which is called direction-dependent separation or
simply, d-separation theorem!3'7!. Basically, this theorem says that if every undirected path
from a node in set V to a node in U is d-separated by a set of nodes E, then V and U are
conditionally independent given E.

A set of nodes E d-separates two sets of nodes V and U if all paths between V and U are
blocked by an intermediate node F given E[8l. A path is blocked if there is a node F on the
path for which either of following two conditions holds:

1) the path is serial (see Fig.1) or diverging (see Fig.2(a)) if F' € E; or

2) the path is converging (see Fig.2(b)) and neither F' nor any of F’s descendents 1s in E.

F'ig.3 shows an interesting example for car electric and engine system!6!. Let’s look at the
relationship between Radio and Gas. We can see from Fig.3 that between Radio and Gas there
are four nodes, Battery, Ignition, Starts, and Moves. Given evidence about the (any) state of
Ignition, we have a serial path between
Radio and Gas: from Battery to Starts,
the first condition in the d-separation cri-
terion tells us that the two nodes (vari-
ables) Radio and Gas are independent e
given Ignition. This i1s correct, since given @

Ignition the state of Radio will have no

Radio to Battery to Ignition to Gas If
we know the Battery is fully charged or
otherwise, we have a diverging network

similar to Fig.2(a).The criterion tells us

again that Radio and Gas are indepen- Fig.3 The Bayesian Network for car electric
and engine system

influence on the state of Gas and vise @
versa. Now let’s look at the path from

dent, which is correct.

Finally, we look at Starts.In this case we have a converging path between Radio and
Gas with Starts as its intermediate node. From the second condition in the criterion, we can
conclude that the path is not d-separated.If no evidence about Starts at all, Radio and Gas are
independent. However, the situation changes, if car starts and radio works: It increases our
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belief that the car must be out of gas. That is, Radio and Gas now become dependent. In this
case the relationship between Radio and Gas is related to the state of Starts. This is different
from the other two cases in which no matter what evidence is given the paths are blocked, hence
d-separated.

Indeed, in Bayesian networks we can use d-separation to read off conditional independencies
which is perhaps one of the most important features of Bayesian networks.

2.3 Inference Using Bayesian Networks

Let’s consider the following scenario. On one autumn afternoon, Ms. Doubtfire was shop-
ping at the local grocery store when Ms. Gibbons rushed in telling her that she saw smoke
from the direction of Ms. Doubtfire’s house. Ms. Doubtfire thought it must be the stew that
had been cooked for too long and caught fire. On her way running home she recalled that her
next door neighbor Mr. Woods burns garden cuttings every autumn. Based on this story we
can build a causal network as shown in Fig.4. This network represents the causal knowledge.
Fig.4 shows that burning garden cuttings and stew caught fire directly affect the probability of
smoke. In the this network we have not directly linked burn cutting and stew on fire with the
action of Ms. Gibbons and indeed Ms. Doubtfire’s.

Given the relationships described in Fig.4, we can assign conditional probability function
for each node (or concept). Let B represent the node, burning garden cuttings, S stand for
stew on fire,S M for smoke, GG for Ms. Gibbons tells, and D for Ms. Doubtfire runs home. Given
either B or S, the conditional probability for smoke SM, may be written as P(SM|B, S). The
conditional probability table for smoke SM may look like the following:

Strew

burns

Ms. Gibbon Ms. Doubttfire
tells runs home

Fig.4 Should Ms. Doubtfire be rushing home?

Mr Woods
burns cuttings

To perform inference in the Bayesian

ul (SM_\B 5) network, we need to computer the poste-

B S True False rior probability distributions for a set of
Tre _ 0.95 | 0.05 ' query variables on the knowledge of ev-

idence variables, P(query|evidences). In
True False 0.95 0.05

Fig.4, Mr. Woods burns garden cuttings and
False True 0.34 0.66 stew over cooked are two query variables,
Ms. Gibbons’ telling could be the evidence

Fal Fal 0.002 0.99 : :
aise aise 8 variable!. For this example based on the

d-separation criterion we need only the following conditional probabilities (instead of 32):
P(G|SM), P(D|G), and P(SM, B, S) which is

P(SM,B,S) = P(SM|B, S)P(B, S) = P(SM|B, S)P(B)P(S),

because B and S are independent if we know nothing about SM.

! Although this example looks simple enough, if you try it manually it may require some effort. For

Interested readers, you may use this example as an exercise and refer to [3] for a detailed description of the
Inference process in Bayesian networks.
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Let the prior probabilities for B and S be {P(B) = 0.8, P(-B) = 0.2} and {P(S) = 0.1
P(-S) = 0.9}.

The conditional probabilities for P(G|SM) is given in Table 1.

Similarly we can specify the conditional probabilities for P(D|G) in Table 2.

’

Table 1 The conditional probability Table 2 The conditional probability
values for P(G/SM) values for P(D|G)
SM -SM G -
G (1, 0) (0.1, 0.9) D (1, 0) (0.1, 0.9)
-G (0, 1) (0.9, 0.1) ~D (0, 1) (0.9, 0.1)

Over the last 15 years many inference systems have been developed using Bayesian networks!16!.
The applications include diagnostic inference (from effects to causes), causal inference (from
causes to effects), intercausal inferences which consider the effect of multiple causes, and mixed
inferences which combine the above.

However, work on Bayesian networks still remains primarily academic. In addition to es-
tablishing conditional independence based on the d-separate criterion,to use Bayesian networks
we must also specify probability distributions which in most cases are very difficult. It has been
proven that the exact probabilistic inference using an arbitrary Bayesian network is NP-hard(29].
In fact Dagum and Luby have shown that even approximating conditional probability inference
using the Bayesian network is NP-hard and in general intractablel2?). Recently researchers have
developed machine learning techniques for constructing Bayesian networks!?1+22].

Furthermore, for Bayesian networks there 1s no mechanism available to handle feedback
cycles!'8. In dynamic intelligent systems, however, feedback is one of the most important capa-
bilities that enables the system to adjust (adapt) itself in response to the changing environment
and the information about the given goals and actual outcomes. Although researchers have
attempted to bring dynamics into Bayesian networks,they have reported very little progress
that is useful in system design.

Bayesian inference is a tool for decision-support and causal discovery in an environment
of uncertainty and incomplete information. Since it is based on traditional probability theory,
it is difficult to handle uncertainties such as vagueness, ambiguity, and granulation. In such a
framework, events in a set are considered all equal and assigned the same binary value: yes or
no. This, however, bears very little relevance to many real-world problems. For instance, it 1s 1n
general impossible to model the following problems: The the average income of the community
is high, what is the probability that a member of the community lives below the poverty line?
If the average income of the community is $50,000, it is highly likely that there is a golf club.
How likely there is a golf club in a community with an average income around $45,0007 It is
safe to say that such problems are ubiquitous in real-world applications.One possible solution
to these problems is the fuzzy cognitive maps (FCMs).

Fuzzy Cognitive Maps

In the mid 1980’s Kosko!® introduced the fuzzy cognitive map (FCM) which incorporates
fuzzy causality measures in the original cognitive maps. FCM provides a flexible and more
realistic representation scheme for dealing with knowledge.FCM provides a mechanism for rep-
resenting degrees of causality between events/objects.This enables the constructed paths to
propagate causality in a more natural fashion through the use of such techniques as forward
and backward chaining. In this paper, I briefly introduce an object-oriented FCM for knowl-
edge representation and adaptive inference!. The fuzzy cognitive maps are useful for problem
domains that can be represented by concepts depicting social events, and causal links from a

Interested readers may refer to [23] for more details.
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single partial ordering. In many applications, we will have to deal problems with measurable
and non-measurable concepts (variables). In addition such problems may contain many causal
descriptions from many causal types and partial orderings.Such a structure is useful to human
experts who will need to base their decisicns on social;socio-economic and physical concepts,
and the causality that exists between these concepts. Fig.5 shows an example of a segment of
the FCM we have developed for decision support using GIS datall2:14]

Promtnent
Likelihood Location
Frequent Incresed
Primary Incresed R ol Public
Road ceessabilit Transport
Incresed Incresed Good
L.ack Of Position
On Street ]
| Visability Ott Street
Parking Parking
Incresed Good
Reduced Chance Of

Prospect

Another Regiona District Good Position Regional
Shopping center (Center Shopping center

Fig.5 An FCM for modeling shopping center decision

3 State Space in FCMs

In real-world applications, fuzzy cognitive maps are usually very large and complex, con-
talning a large number of concepts and arcs. However, the current method for constructing
and analyzing fuzzy cognitive maps are inadequate and infeasible in practice. Furthermore, as
the FCM is a typical nonlinear system, the combination of several inputs or initial states may
result in new patterns with unexpected behaviors. Systematic and theoretical approaches are
required for the analysis and design of fuzzy cognitive maps. In this paper, I analyze the causal
inferences in FCMs. A general FCM can be divided into several basic FCMs. The dynamics
of a basic FCM 1is determined by the key vertexes in the FCM. A group of recurrence formulas
are given to describe the dynamics of the key vertexes.

The FCM 1s a digraph in which nodes represent concepts and arcs between the nodes
indicate causal relationships between the concepts. The connectivity of the FCM can be con-
veniently represented by an adjacency matrix

W _— * s & wl_‘} = s a )
where w;; 1s the value of the arc from node j to node i, i.e., value of arc a;;.

Based on causal inputs, the concepts in the FCM can determine their states. This gives
FCMs ability to infer causally. As suggested by Koskol?42%! this can be determined simply by

a threshold. In general, we define a vertex function as follows.
Definition 1. A vertez function fr,. is defined as

1 u>T
0 T<p’

i — fT,vi(ﬂ) — {
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where p is the total input of v;, e, p = >, wik - k.

Usually, if T = 0, fr.,, is denoted as f, , or simply, f;. For the sake of simplicity and
without loss of generality, throughout this paper we assume T = 0 unless specified otherwise.

Given this definition, an FCM can be defined as a weighted digraph with vertex functions.
O denotes an FCM, v(U), or simply, v stands for vertex (or concept) of U; V(1) represents the
set containing all the vertices of U; (U) or z is the state of v(U); ¢ = (z1,---,z,)" denotes
the state of U, where z; is the state of vertex v; and n is the number of vertices of U; a(U) or
a stands for an arc in U; A(U) represents the set containing all the arcs of U; v“(a(U)) is the
start vertex of a(U) and v!(a(U)) is the end vertex of a(U).

As every vertex may take a value in {0, 1}, the state space of the FCM is {0,1}", denoted
by X°(U) or X°. If the state of U is ¢ after k inference steps from an initial state ¢g, we say
that ¢ can be reached from ¢g, or U can reach ¢ after k inference steps. Although the initial
state ¢ of the FCM may be any state, i.e. ¢g € X° = {0,1}", some states can never be reached
no matter which initial state it is set to. For example, state (* * 1 1)! cannot be reached in

the FCM shown in Fig.6, where * means that it can be any value in {0, 1}.
We define X (U) or X as the reachable state set

of U which contains all states that U can reach.
X>®(0) or X*° is defined as the state set of the
states which can be reached by U after 2™ infer-
ence steps. Obviously

X(0) c X(U) C b & (U). Fig.6 State space of fuzzy cognitive map

It is easy to see which state can be reached by the FCM in Fig.6. However, it will be
difficult if the FCM contains a large number of concepts and complex connections. Whether

a state can be reached in a given FCM or not is a fundamental and important problem in the
analysis and design of FCMs.

Clearly, if a state ¢* € X(U), there exists a state ¢y such that ¢* can be reached in one
step inference if ¢g is set as the initial state. The correctness of this assertion can be proved as
follows. Since ¢* € X (U), there exists a state sequence in X (U),

$*(0),¢"(1),---, 8" (k) = ¢

Obviously, 1 < k.
Select a new initial state as ¢(0) = ¢*(k — 1), then the next state ¢(1) will be ¢*.
Renumbering the vertices of U we can write ¢* slightly differently:

¢ =(¢3,42)7,
where ¢, = (1,1,---,1)T,¢_ = (0,0,---,0)T. Denote W as the adjacency matrix of the
. — =T —T - T
renumbered FCM, ny = dim(¢y),n_ = dim(¢_), Wy = (W ,---, W Y W_ = (=W, 44,

ey =W )T ¢* € X(U) if and only if
W, -9 >0
W_-4>0

has a solution 7 in {0,1}".
From the above discussion, we may develop an algorithm to determine whether a state can
be reached from a particular initial state.
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4 Causal Module of FCM

A general FCM may contain a large number of vertices with very complicated connections.
It i1s difficult to be handled directly, if at all possible. However, an FCM can be divided into
several basic modules, which will be explicitly defined below. Every causal module is a smaller
FCM. Vertices (or concepts) of a causal module infer each other and are closely connected.
Basic FCM modules are the minimum FCM entities that cannot be divided further.

An FCM U is “divided” as FCM U; and FCM 0, if

1} V(U)=V(0,)uV(U,),
2) A(U) = A(U1)U A(DG2) U B(U4,05),

where

B(U1,03) = { a(U)| V' (a(U)) € V(Uy),V°(a(D)) € V(Uy),
or  V'(a(U)) € V(U;),V°(a(V)) € V(L) },
V(O1))NV(U2) =@, A(U1)NAU:) =0,
A(G,) N B(U1,02) =@, A(U2)NB(U,,0;) = 0.

B(UI’UZ) > Ug.
D

Particularly, we consider the causal relationships in subgraphs:

This operation is denoted as U = U; «

B(U1,02) = { a(U)|V'(a(V)) € V(U1),V(a(V)) € V(U2) },

this case i1s described as “U; is caused by U;”, or “U; causes Uy”. Such a division is called a

regqular division, denoted as U = Uy B(U4, U2)

— 9.

Definition 2. An FCM containmge;o circle 1s called a stmple FCM .

A simple FCM has no feedback mechanism and its inference pattern is usually trivial.

Definition 3. A basic FCM is an FCM containing at least one circle, but cannot be
reqularly divided into two FCMs, both of which contain at least one circle.

From the Definitions 2 and 3, we can see that an FCM containing circles can always be

regularly divided into basic FCMs. In general, the basic FCMs of U can be ordered concatenately
as follows.

B(U,. U B(U,, 0 _
(01, 02) . U, (U2, U3) Sy ... B(U,n-1,0,)
D &, 7,

We establish a formal result in the following theorem.

U = U

> U

Theorem 1. Suppose FCM U can be regularly divided into m basic FCMs, then
0= (UZ,0:) U (UL, Uiy B(U;,05)), (1)
where  V(U;) NV(U;) = @ t#5, AU:) NAU,) = @ i#75.
B(U;,5;) = {a(U)[V(a(V)) € V(Bs), VO (a(D)) € V(U;)}.

The inference pattern of a basic FCM U; is determined by its input (external) and initial
state. The inputs of U; can be determined once the inference pattern of Uy, k < i are known.
Subsequently, the inference pattern of U; can be analyzed. If we know the inference patterns of
the basic FCMs individually, we will be able to obtain the inference pattern of the entire FCM,
because the basic FCMs collectively contain all the concepts of the FCM: V (U) = U, V(G;).



4 1 LIU Zhi-Qiang: Causation, Bayesian Networks, and Cognitive Maps 561

The following theorem determines if
an F'CM is not a basic FCM.

Theorem 2. Suppose that FCM U
18 inpul-path standardized and trimmed

of affected branches. If a vertex vo of U
has at least two input arcs and vy does

not belong to any circle, then U is not
a basic FCM.

Theorem 2 provides not only a rule
for determining whether an FCM is a
basic FCM or not, but also presents an

approach to regularly dividing an FCM if it is not a basic FCM: In(vg) and Out(vg). This is
illustrated in Fig.8. The FCM in Fig.8(a) can be regularly divided into FCM in Fig.8(b) and
in Fig.8 (c), respectively, where Fig.8(b) is In{vg) and Fig.8 (c) is Out(vg).

Fig.7 Causal module of FCM

vy (s

(a) (b) (c)

Fig.8 Regularly divided and basic FCMs: according to vertex vg,
FCM in (a) is divided as Out(vg) in (b) and In(vg) in (c)

More specifically such a division can be done by the following algorithm.
Algorithm 1

Step 0. If U is a simple FCM stop.

Step 1.  Select a vertex v of the U, mark v.

Step 2. Form In(v).

Step 3.  If there is no circle in In(v), go to step 7.

Step 4. Form Out(v).

Step 5.  If there is no circle in Out(v), go to step 7.

Step 6. U is regularly divided into In(vg) and Out(vg), stop.
Step 7. If there is no unmarked vertices, U 1s a basic FCM, stop.
Step 8.  Select an unmarked vertex v, mark v, go to step 2.

In general, an FCM can be regularly divided into basic FCMs by repeatedly implementing
Algorithm 1.

5 Inference Patterns of Basic FCMs
The inference pattern of an FCM can be obtained by recursively calculating

p(k +1) = fIWo(k)] = (f1[W1d(k)], - - -, falWnod(k)])".

However, since in most real applications the FCM contains a large number of vertices and
complicated connections, the state sequence can be very long and difficult to analyze. It will
be most useful to draw out properties or recursive formula for the state sequence.
Proposition 1. If an FCM is a simple FCM, it will become static after L inference
iterations unless it has an external input sequence, where L is the length of the longest path of

the FCM.
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The Proof of Proposition 1 is obvious. Consequently, the following is true.

Corollary 1. Vertices except the end vertexr of an input path will become static after L
inference iterations unless it has an external input sequence, where L is the length of the path.

In this section, all FCMs are assumed as basic FCMs, with input paths being standardized
and affected branches trimmed. For the sake of simplicity, we assume that all FCMs do not

have external input sequences unless they are specifically indicated. FCMs with external input
sequences can be analyzed in the similar way.

In our study of the inference pattern of the FCM, we found that some vertices may play
more Important roles than others. We define these vertices as key vertices. The state of every
vertex in the FCM can be determined by the state of key vertices. In the following part of
this section, the definition of key vertex is followed by some discussions of the properties of key
vertex.

Definition 4. A vertezx is called as a key vertex if

1) it is a common vertex of an input path and sa circle, or

2) it is a common vertex of two circles with at least two arcs pointing to it which belongs
to the two circles, or

3) it is any vertex on a circle if the circle contains no other key vertices.

Proposition 2. FEvery circle contains at least one key vertex.

Given Property 3 in Definition 4, the correctness of Proposition 2 is obvious.

Lemma 1. If any vertez, vg € V(U),is not on an input path, then it is on a circle.

Lemma 2. Suppose that vy is not a key vertex and not on an input path, then there is one
and only one key vertex (denoted as v*) can affect vy via a normal path, and there is only one
normal path from v* to vy.

Again suppose the key-vertex set is {vy,:--,v.}. If v;(1 < j < r) satisfies (1) of Definition
4 it 1s the end vertex of an input branch, denote v/(j) as the input vertex. Denote the normal

paths from v; to v; as PEj, Pi]; jrt ,P;,(:’j ) , where (4, j) is the number of normal paths from v;

to vj, P, = P~ means that there is no normal path from v; to v;, and fee—=0.
i3

Theorem 3. If v; (1 < j < r) is not the end of an input branch,

T r(l,j)

i) = fry0, (3 Y Spr{an(t - LEE)). (2)

=1 s8=0

If v; 1s the end of an input branch,

r T(I,j)

2i(1) = fr3 12,0,(00 D SoAmulk = LN} + Fo—laaiyy (U~ LBy, ). (3)

=1 s8=0

Therefore the inference pattern of the FCM is can be determined by the recursive formula
in terms of key vertices. After the states of key vertices are determined, the states of the
remalning vertices can be determined by states of key vertices as follows. In turn, the state of
the entire FCM is also determined.

Theorem 4. Suppose that K,(U) is the key vertex set of U, I,(U) is the input verter
set of U, vo € V(U), vo ¢ K,(U) and vo & I,(U). There exists one and only one verter =*,
z* € K, (U) or z* € I,(U) such that there erists a path, P*(v*,vy) from v* to vy via no vertices
in K,(0).

Theorem 5. P*(v*,vg) is a normal path.

As P*(v*,vg) is a normal path,

zo(l) = fpe(wr ) (2" (I — L(P*(v*,v0)))).
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Thus the state of the entire FCM is determined. With the help of Theorems 2, 4 and 5, we
discuss some important causal inference properties of typical FCMs in the following sections.

6 Inference Pattern of General FCMs

When considering the inference pattern of a general FCM(U), we should first regularly
divide it into basic FCMs (U;,1 < 2 < m) and then determine the inference pattern one by one
according to the causal relationships between of them. For the basic FCM(U;), the external
input should be formed according to the inference pattern of U; (1 < j < ¢). Then the input
paths should be standardized. After this process, we delete all the affected branches to simplify
the FCM(U;) for further analysis.

From the simplified FCM, we need to construct the key-vertex set. If the basic FCM
contains only one circle, and every vertex on the circle has only one input arc, then the key
vertex set contains only one vertex. It can be any vertex on the circle according to Definition
11. If the basic FCM contains more than one circle, the key vertices are the circle vertices that
have at least two input arcs. This can be judged from W. If the :th column of W has at least
two non-zero elements, v; has at least two input arcs. If T}; # 0, as the following proposition
indicates, v; 1s on a circle.

Proposition 3. Verter v; is on a circle if and only of T;; # 0, where T;; is the ith row and

ith column element of matriz T = Z w*.

Following Equations (2) and (;») F;n Theorem 3, we can obtain the inference pattern of key
vertices. Subsequently the states of other vertices including those on the affected branches can
be determined accordingly.

The steps for analyzing the inference pattern of an FCM are given below.

Algorithm 2

Step 1. Divide the U regularly into basic FCMs: U3, -+, 0!
U= (Ui2,0;) U (U, Uji=1 B(U;,0;)).

Step 2. 2 =1.

Step 3. Delete the attached branches of U;.

Step 4. Construct new inputs from basic FCMs U; by B(U;,U;(7 < 1))

Step 5. Standardize the input paths as normal paths.

Step 6. Construct the key-vertex set.

Step 7. Determine the state-sequence formula of the key vertices according to Theorem 2.

Step 8. Determine the state-sequence formula of the remaining vertices.

Step 9. Determine the state-sequence formula of the affected branch.

Step 10. i =i+ 1, if ¢ < m, go to step 2, else stop.

The algorithm is illustrated by the following example. In the example, all the arcs are
assumed to be positive, 1.e. w; ; > 0.

Example

The FCM U, shown in Fig. 9 can be simplified as U, by trimming off the affected branches.

FCM U, and Uy in Fig. 10 are the two basic FCMs in U, shown in Fig.9. Fig. 11 shows U,

which is U, minus the only affected branch, AB(vsg). vis is the only key vertex of U.:

z18(l) = frs(z18(l — 4) + x18(l — 6)).

As 2 is the common factor of 4 and 6, the final state sequence of v;g 1s: 0,1,0,1,---,
0,1,0,1,---. The remaining vertex states of U, can be completely determined by xig. For

example,
ml(l) — $13(l — 2)
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Fig.9 Example of analyzing inference pattern of FCMs: U, is
simplified as O, by trimming the affected branches of U,

The final state sequence of wv; is also
0,1,0,1,.---,0,1,0,1,---.

The affected branch AB(vq0) of U, contains
only one vertex: vyg. Its state is determined by
O., or more specifically, by v1s.

.’1720(!) = $12(l — 1)

The final state sequence of wvyy is also:
0,1,0,1,---,0,1,0,1,--- .

After all the state patterns of U, are deter-
mined, we can reconstruct inputs for basic FCM
Og4. It is shown in Fig.11 as Us. The key vertex

of O 1s v36. By Theorem 2

z16(!) = fi6(Z16(l — 3) + z20(l - 1)).

As the common factor of 2 and 3 is 1, the
final state of Uy is

With all the state patterns of U being de-
termined, it is easy to obtain the state pattern
for the vertices (vs,vy4,v15,v14, U7, v17,v19) In
the aflected branches of U, by the state of U,
and it 1s omitted here.

7 Conclusions

In this paper I have given a brief discus-
sion of the theory of causation, and its impor-
tance 1n decision-support and causal discovery
systems. One of the well-known causal frarne-
works 1s the Bayesian network which uses con-
ditional probability to model causal relation-
ships and uncertainty of the system. Whereas

Od

Fig.10 Example of analyzing inference
pattern of FCMs: Uy can be regularly
divided into two basic FCMs: . and Uy

Oy

Fig.11 Example of analyzing inference pattern of
FCMs:U, is obtained by deleting the af-
tected branch of O, Uy is derived from Uy
by reconstructing the input according to
the inference pattern of 0.
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the Bayesian network has received consideration attention in the research community, it still
remains an llusive goal for developing robust, functional systems for real-world applications.One
of the most significant problems is its inability to model vagueness, ambiguity, and natural
descriptions. Fuzzy cognitive maps offer an alternative solution to the problem. I have presented
a simple discussion of the causal inference process using FCMs. A general FCM may be very
complex, but it can be regularly divided into several basic FCMs according to the results in
Section 4. The inference pattern of a basic FCM is the dominant state sequence of some key
vertices whose behaviors are described by a general recursive formula. Based these results, |
have analyzed the inference patterns of several typical FCMs with an algorithm.
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