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Robust Control of Robotic Manipulators
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Abstract In this paper, a novel fuzzy inverse model control using fuzzy clustering and
sliding mode control (SMC) is proposed for the trajectory tracking of robotic manipu-
lators having unknown dynamics. The fuzzy model of a two-link manipulator is built
based on the derivation of TS models using fuzzy C-means clustering algorithm and the
robot fuzzy inverse model is obtained. Then, in the proposed control framework of fuzzy
inverse model, sliding mode control and the time-delay control approach are used to
compensate for the fuzzy modeling errors and disturbances, thus the system stability
is guaranteed and its tracking performance is improved. The system stability and con-
vergence of tracking errors are proven by stability theory. Finally, an example for the

trajectory tracking of a two-link manipulator illustrates the performance improvement
of the proposed control approach.

Key words Robotic manipulators, fuzzy clustering, sliding mode control, tracking
control.

1 Introduction

Fuzzy logic controllers have found successful applications in robotic manipulators for con-
trol problems, which could be difficult to deal with by other conventional approach!!. Es-
sentially, the SMC theory usually is used to drive state trajectory toward a specified sliding
surface and maintain its motion along the sliding surface in the state space. Conventionally,
it is difficult for human experts to examine all the input-output data from a complex system
to find a number of proper rules for the fuzzy system. To cope with this difficulty, several ap-
proaches to generate fuzzy if-then rules from numerical data have been proposed. In the early
1990’s, the idea of tuning the parameters of a fuzzy model using I/O data becomes a focus
of interest in research. In 1991, Wang and Mendel proposed a method for generating fuzzy
rules by learning from examplel?. Jang proposed a fuzzy-neural networks (ANFIS) method for
parameter adjustment of an TSK fuzzy model'® in 1993. Also in the same year, Sugeno and
Yasukawa published a paper!?! on a FL-based approach to qualitative modeling, where struc-
ture identification could be achieved simultaneously using a Mamdani position gradient-type
fuzzy model by a combination of fuzzy c-means clustering and group method of data handling.
However more and more authors have demonstrated how to improve and enhance the ability of
fuzzy controller®~8! especially integrating fuzzy theory and SMC into fuzzy controller design
to acquire stability and consistent performance is a vigorous area of fuzzy control. The best of
properties of the SMC is its robustness to parameter changes or external disturbance!®!. Hwang
and Lin!1% incorporated fuzzy set theory to construct control rules according to the concepts of
SMC for attenuating the chattering phenomena, but it can not be guaranteed with the stability
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of fuzzy control system. Ting et al. (11 gave a set of fuzzy control rules and applied adaptive
manner to adjust the hitting control, but the problems of how to find a suitable equivalent con-
trol is still not solved. A self-organizing and the adaptive fuzzy sliding mode controllers were
proposed by Yool'2:13! however, as the system dimension increases, the rule number will become
so large that the implementation will be very difficult. Sun et al.!'¥! proposed an adaptive fuzzy
controller based on sliding mode for robot manipulators. Though a good control performance
can be obtained with less fuzzy control rules, the control performance is still sensitive to the
choice of the neighborhood size around the sliding surface. There is no systematic approach to
determine the neighborhood size yet.

In this paper, a new method is developed to generate fuzzy rules from numerical data.
Unlike traditional fuzzy modeling methods, the optimal number of rules (clusters) in the paper
is determined by input-output data pairs rather than by only output data or input data singly.
The fuzzy system constructed is used as an approximator to the robot inverse dynamics, by
which the equivalent control can be constructed for SMC systems. Under the assumption that
the system disturbance and dynamics variations are slow with respect to sampling interval,
introduction of the u(k — 1) in the control law u(k) results in the partial cancellation of the
system disturbance and dynamics variations. Moreover, the reduced disturbance can be further
compensated by the sliding mode control. The control gain in MIMO sliding mode control
can be obtained through Lyapunov synthesis approach. Unlike the sliding model control in
continuous time systems, the control gain obtained here should be subject to an inequality
interval, i.e. an upper bound and lower bound. Then a new fuzzy control scheme is presented
for robot tracking control, which can alleviate the chattering inherent in sliding mode control
without the sacrifice of robustness against model uncertainties and external disturbances. The
simulations of a two-link manipulator demonstrate properties of the proposed control approach.

The rest of the paper is organized as follows. In Section 2, some basics for a fuzzy system,
robot model and its properties are reviewed. Derivation of fuzzy clustering is given and a new

fuzzy control approach based on sliding mode is presented in Section 3. An illustrative example
1s given in Section 4. Finally, Section 5 concludes the paper.

2 Preliminaries

2.1 Definitions
M

Definition. A fuzzy rule base, R = U R', is a union of fuzzy rules, in which each rule

=1
R! is of the form

R!': IF z(k) is F* THEN z(k + 1) = A;z(k) + Biu(k) + wy,
[=1,2,--- ., m. (1)

Where R' denotes the I-th approximation inference rule, F* is fuzzy set, (A;, By, w;) is the [-th
local model of the fuzzy system, m is the number of approximation inference rules, u(k) € R
are control input variables of the system, z(k) € RP are the state variables of the system.

The final output of the system is inferred by taking the weighted average of all local models.

Because the model in (1) only represents the properties of the system in a local region, it is
termed as a fuzzy dynamic model.

2.2 Mathematical Model for an n -link Robot Manipulator
Consider the discrete dynamic model of an n-link rigid robot manipulator

D(q(k +1))q(k + 1) — D(q(k))a(k) — f(q(k),q(k))T = Tu(k), (2)

where T is the sampling interval, D(q(k)) = D (q(k))(> 0) € R™ is the inertia matrix,
f(a(k), q(k)) represents centrifugal, Coriolis and gravitational torques, and u(k) is the piecewise
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constant genaralized force input:
u(t) =u(k) for KT <t<(k+1)T. (3)

The discrete dynamic model for an n-link robot represented in (2) shows a more accurate

performance compared with models obtained through discretization of Euler-Lagrange dynamic
equation. (2) can be written in an explicit form by setting

q(k + 1) = q(k) = q(k) + a(k)Tq(k) (4)

and D(q(k + 1)) = D|q(k) + a(k)Tq(k)] = D(a(k)), (5)
where a(k) represents the change of the slope of the robot joint trajectories at any discrete time
instant. With (4), (2) can be written through some mathematical operations as

q(k+1)—q(k)+D ™" (q(k))((D(a(k))—D(q(k)))q(k)~T f(g(k), a(k))) = D~ (g(k))Tu(k). (6)

It should be noted that D(q) is a positive symmetric matrix defined by D,, < ||D(q)|| < Dus
with D,,,, Dpr > 0 being known constants.

3 Fuzzy Controller Design
Consider the following robot discrete time state equation,

z(k + 1) = Az(k) + Bu(k) + w(k). (7)

-

Where z(k) = (qT(k), g (k)T is the state and w(k) is the control input, w(k) is the lumped
system parameter and disturbance uncertainty.
A sliding surface for the discrete state space is defined as

s(k) = C(z(k) — za(k)) = 0. (8)

Where z4(k) = (q¥ (k),q; (k)T is the desired trajectory to be tracked, and C is the matrix.
In this section, a fuzzy controller design approach based on fuzzy clustering and sliding

mode techniques will be developed for robot control. The goal is to design a control law u(k)

which ensures that the robot joint disaplacement g(k) follows the desired trajectory q (k). We

first use fuzzy clustering to get the dynamics model of the robot, then a composition controller
1s developed.

3.1 Derivation of TS models via Fuzzy Clustering

Through using fuzzy input/output space clustering identification algorithm and let z(k) =
(@T(k),q" (k)T to get the state equation of the robot articulator. The clustering Identification
algorithm can be divided into two stages. The first stage is the identification of the membership
functions, including the determination of the number of fuzzy rules, and the estimation of the
parameters in the membership functions. The second one is the identification of the local rule
maps and the global rule interpolation.

R': IF (zTu.(k)) is F*  THEN z(k + 1) = A;z(k) + Biu.(k) + w;. (9)

1) Identification of membership functions
In the following discussion all the membership functions are chosen as the BSMF (Bell
shaped membership function). First, we define the following criterion function

N m
J(,z) =) Z w(t)”|z(k) — 2%, (10)

t=1 I:]_
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where m is the number of the rules, 2 = [21,22, -, Z,n] is mean prototypes , ||z(k)— 2z;| is
the distance of the feature point to the mean prototype , w, a shape factor, is used to control

the shape of the membership function.
With the known weighting factors, the necessary conditions for minimizing J(u, 2, o) are

N
> (k) z(k)

zZ = T o 1=1,2,---,m, (11a)
3tk
t=1
— [‘ﬁTDz gp]——l @T.D[Y; ] — 1, 2’ e, (].lb)

— [‘P(l): 99(2)1 "ty (p(N)]Ta Dl — diag[ﬂi(k)]NxNa

—1

Gty 27\ :
k) = Z(uz(kl_z;nz) o=l )

[==1,2,---,m

Fuzzy input output space clustering algorithm can be divided into the following several steps.
Step 1. Choose the shape factors w, and pick an termination threshold ¢ > 0 and an

initial membership function uIO) Z p(o) == 1.

Step 2. Update u(®) — p(""“) according to (11c) if I; = 0, otherwise,

pEtl) =0,Vie L and Y pV(t) =
icl,

Where ...
Le{il<i<mlz(t)—z|*=0}, L ={1,2,---,m}—1I.

Step 3. If |jul*tY) — u®)|l < ¢, then stop; otherwise go to step 2.
2) Identification of local linear models

In order to retain the local behavior of the system which is represented by the local linear
models, the BSMF are fixed during the identification of the local models. If the BSMF and
the parameters in the local models are adjusted together such that the global fitting error is
minimized, then the resulting model is a global nonlinear function model rather than the fuzzy
model discussed in this paper. For this, we can get a good global approximation to the given
system, the local fuzzy rules no longer represent the local behavior of the robotic manipulator.
Since the multi-input multi-output fuzzy model can be represented by m multiple inputs and
single output systems, we only consider the multiple inputs/single output system and still use

z(k + 1) to represent one of the output components. Thus, one of the output components can
be rewritten as

M
2(k+1) =) pik)fi(z(k)). (12)
i=1
Where p;(k) is the membership function of the i-th local linear model and recall (9),

fi(z(k)) = A;=z(k) + Biuc(k) + w; (k).
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The goal of the structure identification (12) is to select the most significant terms from a

set of candidates to describe z(k + 1). If a certain term is not selected during the process, it
indicates the term has little effect on the fuzzy model (12).

Suppose that the following model has been selected in the above structure algorithm.

2(k+ 1) = vk, p)é. (13)

Where 2(k+1) and & denote the estimates of z(k+1) and a respectively, v(k, p) = (2(k), u.(k)),
a = (A;, B;,w;). The parameter estimation is fulfilled by minimizing the following criterion,

J(0) = ||U — &(m)a (14)
Where,
U= (z(l),z(Z),---,z(N))T, (15)
20(1)  21(1) -+ 2m(1)  wo(l)  wi(1) -+ wm(1)
Zo(2 z1(2 v Zar(2 ug(2 U (2 e unm(2
o= | 2D BO @ W) @) -
20(N) z1(N) -+ zm(N) w(N) ui(N) - um(N)
The minimization of the performance loss (14) results in
& = ()" B()) " &()™U. (17)

The convergence of the identification algorithm can be referred to the conventional least-squares
algorithms for more detail.

3.2 Fuzzy Controller Design

The preceding development is to get the fuzzy model of robotic manipulators using fuzzy
cluster algorithm. Now, consider the following control law

u(k) = ue(k) + un(k), (18)

where

uc(k) = —(CB)Y Y CA(z(k) — z(k — 1)) = (CB)u(k — 1) + C(zq(k) — z4(k + 1))}  (19)
and
un(k) — msgn(s) — K, (20)
with

A(p) = ZMA!: B(p) = ZP'IBI&
=1 =1

represent the equivalent control component and nonlinear control component, respectively. Be-
sides, K = KT > 0, K,,, = diag(km11, km22, - » kmnn) is the gain coefficient, u, (k) was used to
compensate for the modeling errors and disturbance uncertainty.

Substituting (7) into (8) and together with (18), we have

s(k+1) = s(k) + C(w(k) — w(k — 1)) — K,,sgn(8) = s(k) + e(k) — Kmmsgn(s). (21)

where

e(k) = C(w(k) — w(k — 1)).

The following theorem gives a stable learning law, and guarantees the asymptotic stability
of the system.
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Theorem 1. For system (7), the control law (18) can ensure the system switching func-

tion converge to the sliding boundary layer exponentially fast. Where the control gain K,, can
be determined as

di(k) < ki < 28;(k) + d;(k), (22)
where
di(k) = lei(k)|.

Proof. Let the Lyapunov function is defined by

1
V(k) = -2-3T(k)s(k) (23)
Thus, the forward difference AV (k) of the Lyapunov function is obtained as

AV (k) =V(k+1) - V(k) = -:12— 8T (k + 1)s(k +1) — 8T (k)s(k)] =

st(k)As(k+1) + %AST(’G +1)As(k+1)

ST (k)(e(k) ~ Knmsgn(s)) + 5 (e(k) ~ Knsgn(s))™ (e(k) — Kpnsan(s)) =
STe(k) ~ 3Tdi&g(km11, -y kmiiy 0y kmnn)sgn(s)+
5 (K2, + €™ (k)e(k) — €™ (k) Komsgn(s) — Knsen(s)e(k)) =

n

S L83 (k)i (k) — L8508 s + 2k + 2d2(8) — s (k)] (24)

=1

It is easy to verify that if (22) is satisfied, AV (k + 1) < 0. Then, it comes to a conclusion that
the system has a stable sliding motion. ]

4 Application

In this section, the above developed control approach is employed in the position control
of a 2-link manipulator!!¥. The dynamical equaion of a 2-link manipulator is

DO DD (5] = [ @] 4 [aBds] [

[ o

where

D11(¢) = (my + ’*”7’&2)(7‘;):Z T "’?’?»2(’*“"2)2 + 2mgry g cos(@) + Ji,
D13(@) = ma(r5)* + morir cos(¢),

Do (¢) = ma(ry)* + Jo,

q1(0, ¢) = —(m1 + my)r] cos(8) — mars cos(¢ + 6),

q2(0, ¢) = —mar, cos(0 + @), Fi2(¢) = maryry sin(e),

lu;| < 360(kg - m*/s), |ua| < 182(kg - m?/s).

The parameters of the robot are
ry = 1lm, 7, =08m, J;=J,=>5kg-m?,
my = 0.5kg, m. = 6.25kg.

The desired joint angle trejectory for the robot to follow is

0a(t) = 0.5(sint + sin 2t),
P4(t) = 0.5(cos 3t + cos 4t), (26)
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where ¢ € [0, 27|, the sampling interval is 7 /50, the fuzzy I/O space clustering algorithm is used
to get the following fuzzy state model with only three rules,

v(k +1) = pf(z(k)), (27)
where vis [0 ¢|T,u € R2XS z(k) is [(0(k)O(Kk)u (k — 1); d(k) H(k) uz(k — 1)]T.

The membership function and the clustering center for the first joint of the manipulator are
obtained as,

] = 112,3’0' - 1/(w — 1) —_— 1/(1-2 — 1)3
= (0.1998,0.0426,47.2887)7,
25 = (—0.2151, —0.1543,128.4728),

z3 = (—0.2795,0.0107,191.5544) T . (28)
The local linear models of the first robot joint are,
A, _ |0-9958 0.0627| . _ [0.0078 0] oo _ | 01029
ll—l- 0 0 J: 11_'- 0 0_1 11 — 0 y
0. 9842 00724 [0.0046 0] —0.0472
— | — —
Ap = L ],Blz l 0 OJ’wu [ 0 ]1
—~0.9903 -0.0596 0.00021 O —0.2771
[ 0 ]3513=[ 0 0},1013:_ 0 } (29)
The angle for the first robot joint can be rewritten as,
3
O(k+1) = Z wifi(z(k)) = pafr + pefe+psfs =
[=1
0.9958416(k) + 0.06271,0(k) + 0.0078u;u;(k — 1) + 0.10294, +
0.98424,0(k) — 0.0724p20(k) + 0.0046u0u; (k — 1) — 0.0472p,—
0.990330(k) — 0.0596 30 (k) + 0.0021p3u; (k — 1) — 0.2771us. (30)

Similarly, the membership function and the clustering center of the second robot joint are
obtained as

-1

wi(z) = Z lz_%l ° 0 1=1,23, o=1/(w—-1)=1/(1.2-1).

|z — z;||°

j=1
z, = (—0.2711 0.5268 103.3799)",

z, = (—0.1093 0.0140 40.9023)",
2, = (0.3311 —0.5142 —21.9805)".

The local linear models of the second robot joint are,

A, — | 709791 —0.0616| ., 0.0037 0}  _ —0.0050 |
21 — 0 O 3 21 — O O ? 11 — 0 | »
Ao — 0.9785 0.0618 B.. — 0.0054 O S 0.0097

0.9804 —-0.0611 0.0014 O 0.0001
A23=[ 0 0 ],Bza-——[ 0 O],'wm:l ] (31)
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Then the angle of the second robot joint is,

3
¢(k +1) ZZNIfI(Z(k)) = p1f1+ pafa+ usfs =
=1

— 0.9791p1 (k) — 0.061611 p(k) + 0.0037p1ua(k — 1) — 0.005, +
0.9785us (k) + 0.0618126(k) + 0.00545uz (k — 1) + 0.0097 o+
0.980436(k) — 0.061113¢(k) + 0.0014uzuz(k — 1) + 0.0001 3. (32)

To demonstrate the modeling precision by fuzzy clustering shown above, Fig.1 denotes the
approximation errors for two joint angles of the robotic manipulator. It can be seen that the
model precision is good enough for the fuzzy inverse model control.

Simulation is done using a fourth-order Runge-Kutta algorithm with an integral step of
0.01s, controller-sampling integral are also selected as 0.01s. The initial simulation conditions

are: (8(0),60(0),4;(0)) = (1,-0.5,0), (4(0), $(0),u2(0)) = (1, —2,0). Substituting (27) and (31)
Into (18),, and ChOOSiIlg 0.0062 < klll < 01798,0 < klgg < 0,00023 < kgll < 000153,0 <
kooo < 0, the system responses of tracking errors are shown as Fig.2.

3 : —— 2.5
), 9 tracking error of the first joint angle
,g 1 I ——— tracking error of the second joint angle
2 :': 1.5}
n 0 E
st
-1 I
v o
-g —21 = 0.0
s —93 2 oC
= 4} / * RY.
"5 3 =4
E __5 'i.‘ ' b —0.0
D _g! i thefirst joint angle 1t
© - | ' the second joint angle
0 1 2 3 4 5 6 7 1517 2 3 4 5 6 7 8 9 10
t/s t/s
Fig.1 Approximation errors of the first and Fig.2 Robot tracking error responses
second manipulator using fuzzy controller
It has been shown that the number l0-3
« 10—
of fuzzy rules can be reduced by fuzzy 0.5 ———————— — . —
clustering, thus a simplified fuzzy control 04l T tracking crror of the sccond joint angle
structure is resulted. In this example, the | ~ tracking error of the first joint angle
satishied control performance is obtained g 03
with only three fuzzy rules, the model- E 0.2
Ing error 1s compensated by discrete SMC S 0.1}
control. 5 ol
: . s
To study the contribution of fuzzy S
controller based on the derivation of TS = 01
models using fuzzy C-means clustering al- —0.2
orithm, Fig.3 shows ] ~0.3 — -
g , '1g.3 shows the tracking error 0 3 3 5510

D
responses with u=—KS only. It is shown t/s
that the addition of this fuzzy controller

makes a significant improvement in the ‘
tracking performance (See Fig.2). without fuzzy controller

Fig.3 Robot tracking error responses
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5 Conclusions

A new fuzzy controller based on T'S fuzzy clustering model is proposed in this paper for the
trajectory tracking of robotic manipulators with unknown nonlinear dynamics. Main idea is the
integration of fuzzy inverse model approach and the discrete sliding mode control, where fuzzy
control is used to approximate the robot dynamics nonlinearities while discrete sliding mode
control is used to compensate the system remaining perturbations for improving the system
performance and guaranteeing the system stability. Main contributions of the paper include:

1) As the controller contains an estimate of the perturbations, the remaining part of the
system perturbations will be the difference of perturbations in two adjacent sampling instants.
Under the assumption that the system perturbations vary slowly with respect to sampling

interval, the remaining perturbations are very small in magnitude. Moreover, the remaining

perturbations can be further compensated by the sliding mode control such that a good tracking
performance can be guaranteed.

2) A similar result is derived that the control gains in MIMO discrete sliding mode control
are also subject to an inequality interval, which is consistent to that for SISO discrete sliding
mode control. Since the system disturbances are reduced significantly by the perturbation
estimations in the controller, the estimation conservation is overcome.

The simulation results show that the fuzzy approximator constructed through I1/O data
provides a new alternative for further simplifying the design of fuzzy controllers. Besides, after
incorporating the linguistic information into the fuzzy controller, the adaptation speed became
much faster, and a better transient performance and learning convergence are obtained.
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