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Abstract In this paper, we propose a new approach to DNA-based evolutionary algo-
rithm (DNA-EA) to design automatically a class of Takagi-Sugeno (TS) fuzzy controllers.
The fuzzy controllers employ TS fuzzy rules with linear consequent, continuous input
fuzzy sets, Zadeh fuzzy logic AND operation, and the widely-used centroid defuzzier.
The fuzzy controllers are proved to be nonlinear PI controllers with variable gains. The
fuzzy rules are automatically discovered, and the design parameters in the input fuzzy
sets and the linear rule consequent are optimized simultaneously by the DNA-EA. The
DNA-EA uses the DNA encoding method stemmed from the structure of the biological
DNA to encode the design parameters of the fuzzy controllers. The gene transfer opera-
tion and bacterial mutation operation inspired by a microbial evolution phenomenon are
introduced into the DNA-EA. Moreover, frameshift mutation operations based on the
DINA genetic operations are also used in the DNA-EA. Our encoding method is suitable
for complex knowledge representation, and is easy for the genetic operations at gene level
to be introduced into the DNA-EA. The length of the chromosome is variable and it 1s
easy to insert and delete parts of the chromosome. As a demonstration, we show how to
implement the new method to design automatically a TS fuzzy controller in the control
of a nonlinear system. The fuzzy controller can be automatically constructed by the
DNA-EA. Computer simulation results indicate that the new method 1s effective and the
designed fuzzy controller i1s satisfactory.

Key words DNA encoding method, gene transfer operation, frameshift mutation, evo-
lutionary algorithms, TS fuzzy control.

1 Introduction

Fuzzy systems have successfully been used for a variety of applications, especially in con-
trol applications and modeling applications!!?). However, sometimes, expert knowledge cannot
be easily described in linguistic languages. In these cases, the alternative methods are to ac-
quire automatically the fuzzy rules and determine the parameters of a fuzzy system. Many
approaches, such as, artificial neural networks (e.g., [3, 4]) and evolutionary algorithms (EAs)
(including genetic algorithms (GAs))(e.g.,[5~ 9]), have been proposed to develop fuzzy systems
by automatically determining the design parameters in the input fuzzy sets and the rule conse-
quent. For examples, Karr and Gentry applied a GA to tune the fuzzy sets of a fuzzy controller
that controlled a pH control process and a cart-pole balancing system!®). Shi et al. discussed
how to evolve the shapes and types of the fuzzy sets and fuzzy rules using an EA!3!.

Although the GA approach provides a way to possibly obtain global optimization solution,
it has some limitations. In a GA, the search for an optimal solution is achieved through the
manipulation of a population of string structures known as chromosomes. Each chromosome is a
simple coding of a potential solution to the problem to be solved. With successive generations of
population through reproduction and recombination operators, such as crossover and mutation,
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the overall quality of the population assessed by the fitness function can be improved. In general,
the bit string (0-1’s) encoding is the most common method adopted by GA researchers because
of its simplicity and tractability. However, when the size of the population grows up and
the encoding of the chromosomes is very large, the expense of the evolutionary computation
would become almost impractical. The rather long strings after encoding will increase the
complexity of the problem. Also, GAs are not effective for searching the solution space locally
due to crossover-based-search, and the diversity of the population sometimes decreases rapidly.
Moreover, the GAs can neither represent the diverse genetic information by only using 0-1’s
encoding, nor can better imitate the regulation action of genes to the genetic processes. As such,
some biological operations at the gene level cannot be effectively adopted in the existing GAs.
For the applications of GAs, a well-chosen chromosome format can enhance the understanding
of the problem formulation and is also flexible for practical implementation.

Deoxyribonucleic acid (DNA) is the major genetic material for life, and encodes plentiful
genetic information. A natural question we wonder is how to utilize the genetic mechanisms
of the biological DNA to develop a new DNA-based computation model for optimization prob-
lems? Recently, extensive studies have been conducted to explore the possibility of using DNA
as computing hardware (e.g.,[10~ 13]). Moreover, research has been directed to the soft com-
puting aspect of the DN A computing, that is, the integration of DNA computing with intelligent
technologies!!4l | e.g., evolutionary computation!!®~17) and neural networks!'®1%!. Among them,
the integration of DNA computing with evolutionary computation is a major topic and the
current interests are on two aspects: to explore the relationship between evolutionary compu-
tation and DNA-based computation!!¥, and to apply GAs to search for good DNA encoding
methods!!®!. View from the mechanism of evolutionarily inspired approaches, it can be seen
that they seem suitable to be implemented by DNA. As such, in order to overcome the limita-
tions of the GAs, a few of GAs based on the mechanism of the biological DNA, such as double
stranded DNA['7] and DNA encoding method [16:20:21] have been developed. Our group used
a DNA encoding method and developed a DNA-based GA (DNA-GA) to find the fuzzy control
rule sets in a Mamdani fuzzy system(?%). Yoshikawa et al. combined the DNA encoding method
with the pseudo-bacterial genetic algorithm (PBGA)[m], and developed a DNA PBGA. Besides
the algorithms based on DNA models, Chen et al. proposed the laboratory implementation of
the DNA-GA for some simple problems, such as the MAX 1s, the royal road and the cold war

problems(23!.

The genetic information is a great source from which to develop variations on the basic
GA scheme. During the microbial evolutionary process, bacterial can transfer DNA to recipient
cells through bacterial recombination at the bacterial genetic level. Genes can be transferred
from a single bacterium to others!?4l. Inspired by this phenomenon, we could develop a gene
transfer operation and a bacterial mutation operation, which directly transfer a gene strand
from a cell to other cells.

In this paper, we investigate how to design automatically a class of Takagi-Sugeno (TS)
fuzzy controllers by employing a new DNA-based evolutionary algorithm (DNA-EA). In Section
2. the configuration of the fuzzy controllers is defined. In Section 3, we show how to employ
the DNA-EA to discover the effective fuzzy rules of the TS fuzzy controllers. We first give
an introduction of the biological background about DNA-EA, and present an artificial DNA
model based on the biological structure of the DNA. Then, we develop a new DNA-EA, which
incorporates features of DNA and bacterial evolution into the EA. Some important procedures
of the DNA-EA to design the TS fuzzy controllers, such as DNA encoding method and DNA-
based genetic operators, are discussed. Moreover, we show how to employ the DNA-EA to
design automatically the TS fuzzy controllers by adding or deleting the number of tuzzy rules
and tuning the design parameters in the input fuzzy sets and the rule consequent. In Section
4, we provide an example to demonstrate the efficiency and effectiveness of DNA-EA in the
design of the TS fuzzy controllers. In Section 5, we discuss some advantages of the DNA-EA.
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2 Configuration of a Class of Takagi-Sugeno Fuzzy Controllers

The TS fuzzy controllers studied in this paper employ two input variables and one output
variable. The input variables are error and rate change of error (rate, for short) of system
output with respect to output setpoint /reference. They are denoted as follows:

e(nT) = SP(nT) — y(nT),
r(nT) = (e(nT) —e(nT —T))/T,

where n is a positive integer, T is sampling period, SP(nT') is the setpoint/reference, and
y(nT) is system output. The two input variables are both fuzzified by /N input fuzzy sets. The
generalized membership function is used for a fuzzy set, and is designated as p;(€) (or p;(r)),
where 2 = 1,.--, N. The mathematical representation for the membership functions is:

ui(z) = GM (e, Bi,vi) = e_lmﬂﬁ"lﬂaiﬂ = € orr, (1)

where a;, 3;, and ~y; are three design parameters in the membership functions. We call (1) the
generalized membership functions, because with different values of the parameters a;, 3;, and ~;,
(1) can approximate various membership functions, such as widely-used triangular, trapezoidal
and gaussian membership functions!?®l. That is to say, the definitions of the input fuzzy sets
are very general and contain almost all of the fuzzy sets employed in fuzzy systems!!+2.

NT'S fuzzy control rules with linear consequent are used. The form of the TS fuzzy rules
is as follows:

IF e(n) — GM(aei: Beis Tei):
AND r(n) — GM(O:N:, )3?*1',: T'ri); (2)
THEN  Au(nT) = p;e(nT) + q;r(nT),

where Au(nT) is the incremental output contribution of this rule to the fuzzy controller output,
and p; and ¢;{(z = 1,---, N) are design parameters in the rule consequent. For N fuzzy rules,
there are 2V design parameters in the rule consequent. The parameter values are chosen by the

fuzzy system developer. Zadeh fuzzy logic AND operation is employed to evaluate the ANDs
in the fuzzy rules, and the combined membership for the rule consequent is

pi(Au) = min(p;(e), pi(r))-

The centroid defuzzifer is employed for defuzzification!3!:

N
Z pi(Au) - (p;e(nT) + q;r(nT))
Au(nT) = = . (3)

Z pi(Au)

The new output of the fuzzy controller at nT 4 T is

u(nT + T) = u(nT) + Au(nT).
From (3), we have:
Au(nT) = Ki(e,r)e(nT) + Kp(e, r)r(nT), (4)

where

N N
Y wi(Au) - g D wi(Au) - p;

Kp(e,r) = = : Ki(e,r) = —
> pi(Au) Y pi(Au)
=1 =1
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Recall that the linear PI controller in incremental form is:

Au(nT) = K;e(nT) + K,r(nT), (5)
where K, and K; are proportional-gain and integral-gain, respectively. Comparing (4) with
(5), one sees that the fuzzy controllers are actually nonlinear PI controllers with variable
proportional-gain,K p(e, r) , and variable integral-gain, K(e, ), which are determined by e(nT),
r(nT) and the design parameters, a;, 8;, and ~; in the input fuzzy sets, and p; and ¢;, in the
rule consequent.

The above gain relationship between the TS fuzzy controllers and the linear PI controller

can be used to achieve reasonable initial ranges of the design parameters for the fuzzy controllers,
as will be shown 1n detail later.

3. Automatic Design of TS Fuzzy Controllers via the DNA-EA

In this section, we develop a new approach to the DNA-EA and their use for the automatic
design of the T'S fuzzy controllers defined in Section II. The DNA-EA uses a new DNA encoding
method inspired from the biological DNA. We also discuss how to use the DNA encoding
method replacing the bit string encoding method in the GAs to represent the fuzzy rules of
the TS fuzzy controller. In the DNA-EA, we employ the gene transfer operation replacing
the crossover operation, and the bacterial mutation and the frameshift mutation operations
replacing the point mutation operation in the GAs. By using the DNA-EA, the effective fuzzy

rule sets of the TS fuzzy controllers can be discovered and the design parameters in the input
fuzzy sets and the rule consequent are optimized simultaneously.

A) New DNA Encoding Method to Fuzzy Rules

As we known, the basic elements of biological DNA are nucleotides. Due to their different
chemical structure, nucleotides can be classified as four bases: Adenine (A), Guanine (G),
Cytosine (C) and Thymine (T'). A triplet code of nucleotide bases specifies the codon, which in

turn contains a specific anticodon on transfer RNA (tRNA) and assists subsequent transmission
of genetic information in the forma-

tion of a specific amino acid. A chro- Table 1  Translation from the codons in the DNA chro-
mosome consists of combinations of mosome into the amino acids, then into the pa-
the above four bases and can rep- rameter valuse of the T'S fuzzy controllers
resent different genes. Although e Seoord Booo Thicd
there are 6;—1 poss'lble trlplet codes, Base T . y e Base
olily 20 amino acids are interpreted Phe (1) " Ser(3) | Tyr(d) | Cys(3) | T
by codons.The corresponding rela- T | Phe (1) | Ser (3) | Tyr (4) | Cys(5) | C
tionship between codons and amino Leu (2) | Ser (3) | Stop(0) | Stop(0) | A
acids i1s shown in Table 1. It should Leu (2) | Ser(3) |Stop (0) | Trp (6) | G
be noticed that same amino acid | Leu (2) | Pro (7) | His (8) | Arg(10) | T
may be encoded by different codons C | Leu (2) | Pro (7) | His (8) | Arg(10) | C
in the DNA[24] Leu (2) | Pro (7) | Gln (9) | Arg(10) A
From the biological DNA struc- Leu (2) | Pro (7) | Gln (9) | Arg(10) | G
tures, we can exploit an artificial Ile (11) | Thr (13) | Asn (14) | Ser (3) T
DNA computation model for some A | Ile (11) [ Thr (13) | Asn (14) ] Ser (3) | C
practical problems. A single strand Met (12) | Thr (13) | Lys (15) | Arg (10)| A
of DNA can be likened to a string Met (12) | Thr (13) | Lys (15) |Arg (10) | G
consisting of a combination of four Val (16) | Ala (17) | Asp (18) | Gly (20) | T
different symbols, A, G, C,T'. Math- G | Val (16) | Ala (17) | Asp (18) | Gly (20) | C
ematically, this means we have a Val (16) | Ala (17) | Glu 219) Gly (20)) A
four-letter alphabet » {A,G,C,T} Val (16) | Ala (17) | Glu (19) | Gly (20)} G

to encode information, which 1s

more than enough, considering that an electronic computer needs only two digits, 0 and 1,
for the same purpose. In the artificial DNA model, the design parameters of a problem to be
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solved are encoded by four-letter alphabet » {A,G,C,T} to form a chromosome.Based on the
DNA model, we can introduce features of the biological DNA into the EA and develop the new
DNA-EA.

In our new DNA encoding method for the TS fuzzy controllers, the chromosome with
S {A,G,C,T} codes determines the parameter values in the input fuzzy sets and the rule con-
sequent. Specifically, a triplet code of nucleotide bases specifies the codon, and transmits genetic
information in the formation of a specific amino acid. Each amino acid is interpreted as the
values of design parameters in the input fuzzy sets and the rule consequent. The corresponding

relationship between a DNA chromosome and the TS fuzzy rule sets is described in Fig. 1.
In the figure, the DNA

chromosome 1s made of n TS DNA codes
fuzzy rules, and its length is
variable according to the num-
ber of the fuzzy rules. A

part of DNA codes (totally 24  pna

A &
[ L

A fuzzy rule

A 4 A =¥a = L
N J J

_ e(n)“ r(n) Au(n)

¥
bases) is corresponding to a Chromosome bedl — L = === N

fuzzy rule, and can be trans- Rule # Hl  #2 #k #n
lated into the design param-

eters in the input fuzzy sets Fig.1 The DNA decoding method of a DNA chromosome
and the rule consequent. The corresponding to a group of fuzzy rule sets

meaning of each amino acid is
determined by its position in the sequence of amino acids corresponding to a chromosome. In

Fig.1, we also provide the translation process from a part of DNA codes to the design parameters
in the rule # k. Based on Fig.1 and Table 1, reading from the top of a chromosome, it can be
translated into the design parameters to form a fuzzy rule set.

It should be noted that the DNA encoding method to the TS fuzzy rule sets supplies a
high degree of freedom for the DNA-EA, which can simultaneously define the variables to be
used i1n the rules, the rules themselves, the parameters in the input fuzzy sets and the rule
consequent, and the number of the rules in the rule base. However, the encoding method
has some drawbacks due to the lack of uniformity of membership functions. Every rule has
a different set of membership functions, and consequently, there is no bonding between the
membership functions for a variable. The purpose we use such DNA encoding method is that
the genetic operations in the DNA-EA can be implemented on the DNA chromosome. And the
adaptive addition or deletion of a fuzzy rule can be easily implemented.

Based on the DNA encoding method, we following develop the genetic operators in the
DNA-EA.

B) Gene Transfer Operation

The gene transfer operation i1s done as follows:

1) Sort the population and divide it in two halves. The half with higher fitness is called
the superior half, and the other half is called the inferior half;

2) Choose randomly one DNA chromosome from the superior half, named source DNA
chromosome, and another DNA chromosome from the inferior half, named destination
DNA chromosome;

3) According to a given criterion, choose a good part from the source DNA chromosome
and transfer it to the destination DNA chromosome. A good part can be a fuzzy rule
or a group of rules with a high degree of activation value;

4) Repeat 1), 2), and 3) for M times in one generation, where M is the number of
infections per generation.

The process for the gene transfer operation is shown in Fig.2. The gene transfer oper-

atlon 1s expected to rapidly spread the good parts (corresponding to the good fuzzy rules)
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of the DNA chromosome with su- -
perior fitness to the DNA chro-
mosome with inferior fitness. By Superior y
doing so, the overall search pro-  half
cess should be proceeded more ef-

ficient, since the operators actu- N
ate more frequently on better rules,

leading to the rapid construction

S R —
. |
e —
of fuzzy systems that fulfill the re- - L — I
————————

quirements.

C) Mutation Operation Inferior

In DNA-EA, two mutation  half 4
methods are employed. One is the
bacterial mutation, and the other \
1s frameshift mutation.

1) Bacterial mutation

Fig.2 The gene transfer operation

Suppose there are p parts in a DNA chromosome. A part is corresponding to a fuzzy
rule. The best DNA chromosome is chosen from the m DNA chromosomes. The ith part of
the selected DNA chromosome is randomly chosen and transferred to corresponding part of the

rest m — 1 DNA chromosome. The bacterial mutation operation is always applied to all the m
chromosomes 1n the population.

2) Frameshift mutation

In the biological DNA chromosome, there are two frameshift mutations. One is deletion
mutation, in which one or more base-pairs are lost. Deletion mutation 1s due to enzyme op-
eration. The other is insertion mutation, in which one or more base-pairs are inserted into
the sequence. Insertion mutation is due to virus operation. Accordingly, we have developed
two frameshift mutations of ours: deletion and insertion. The two frameshift mutations are se-
lectable according to the evolution process of the DNA-EA. Fig.3 shows an example of deletion
operation where the bases between the start codon TAG and end codon TAT are lost, as such
a fuzzy rule is deleted. Fig.4 shows an example of insertion operation where a base sequence
moves into the chromosome, and a fuzzy rule is added into the fuzzy system. That is to say, the
deletion and the insert mutation operations could be used to add or delete some bases in the
DNA chromosome. The operated bases can be one or several fuzzy rules. If the contributions
of two fuzzy rules to the fuzzy controller are near, one fuzzy rule can be deleted by using the
deletion operation. If the control performance of the fuzzy system cannot be improved any
more by using the current fuzzy rule sets, we should consider to add a (or several) fuzzy rule(s)

by using the insertion operation. As such, the fuzzy rules could be automatically added or
deleted to obtain the more proper fuzzy rule sets.

o~ — e e Virus; ATAG}]GC'I"AGTTAACC AGTATACT
... TACGAGGCCGTAGTACTGATAGAGGCGATACTATGTAG ... y
.  1TAGCGATCAGATACGTA
Base Deletion
( Delete a fuzzy rule ) l Base Insertion
fuzzy rul
... TACGAGGCCGGTAG . . (Inserta fuzzy rule )

TAGCGATCAGATATAGGGCTAGTTAACCAGTATACTACGTA

Fig.3 An example of frameshift mutation:

Fig.4 Another example of frameshift mu-
Deletion operation.

tation: Insertion operation
D) Performance Evaluation

Using the new DNA encoding method, we can translate the codons into the amino acids
based on the corresponding relationship between the codons and the amino acids shown in Table
1. Then, the amino acids are translated into the design parameters of the TS fuzzy controllers.
The translation process in Table 1 imitates the translation process from DNA to protein. Also,
it is a basic framework for translating the codons into the amino acids, and then into the design
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parameters. The range of the design parameters can be adjusted with respective to [0, 20]
according to different design problems. For a particular application, one may transfer a value
in the range of [0, 20], into the proper range of the design parameters. After the translation,
the fuzzy controller with these design parameters can be used and the fitness function can be
computed. The choice of the fitness function or the performance index is dependent on the
types of responses that are desired for the particular system.Since the central objective of fuzzy
control is to minimize the error between the actual system response and the setpoint /reference,
the fitness function we adopt in this paper 1s chosen as follows:

(e* (k) + r*(K)),

M:

ffit = —

x
l

1

where C is a constant.

When we use the DNA-EA to design automatically the TS fuzzy controllers, we first
employ a small number of (e.g., two) input fuzzy sets to fuzzify e(nT) and r(nT), initially.
Then, we adopt the gene trasfer operation and bacterial mutation operation in the DNA-EA
to evolve the fuzzy systems. After evolution of a certain generations, e.g. 10 generations, if the
contributions of two fuzzy rules to the fuzzy controller are near, one fuzzy rule is deleted by
using the deletion operation. If the control performance of the fuzzy system cannot be improved
any more by using the current fuzzy rule sets, we consider to add a (or several) fuzzy rule(s) by
using the insertion operation. As such, the fuzzy rules could be automatically added or deleted
to obtain the more proper fuzzy rule sets. After the convergence of DNA-EA, the structure of

the fuzzy controller can be built, and the design parameters in the input fuzzy sets and rule
consequent can be obtained.

4 Simulation Study

Due to their nonlinear properties, fuzzy controllers are known to be capable of regulating
nonlinear systems. However, it is rather difficult to construct the fuzzy rules and tune the
design parameters in the input fuzzy sets and the rule consequent, because there are many
design parameters.

In order to examine the effectiveness of the DNA-EA, we now employ the DNA-EA to
design automatically the TS fuzzy controller and use it to control a nonlinear system. The
DNA-EA is used to build the fuzzy controller and to optimize the design parameters in the
input fuzzy sets and the rule consequent simultaneously. The nonlinear systems is

y(k) = 0.8y(k—1) — 0.6y(k — 2) + 0.4u(k — 1) +0.12u2(k — 1) + 0.2u(k — 2) + 0.06u%(k — 2). (6)

Initially, the T'S fuzzy controller uses two generalized membership function-type input fuzzy sets
to fuzzify e(nT') and r(nT'), respectively, which means the TS fuzzy controller only employs two
fuzzy rules at the beginning. The number of population, m, is 50. The number of infections
per generation, M, is 20.

Before computer simulations, we find a proper initial range for each design parameter in
the rule consequent according to the gain relationships between the TS fuzzy controller and
linear PI controller derived in Section 2. First, we design a PI controller by using the trial-
and-error tuning method. The good gains of the PI controller are: K, =0.1, and K; = 0.1.
Then, according to the gain relationships between the TS fuzzy controller and the linear PI
controller, we can achieve reasonable initial value ranges of the design parameters for the TS
fuzzy controller. We roughly choose the proper ranges of the design parameters in the rule
consequent based on the values of K, and K;, where [pi®, p2*] = [0,0.2] and [g™", g™a*] =
0,0.2]. Furthermore, the tra,nsformlng relationship between the parameter values [0, 20] and
[pin pmax] (or [qm‘“, g:*%*]) can be established.

During the computer simulation, the gene transfer operation and the bacterial mutation
operation are employed in the DNA-EA at each generation. At the mean time, after the
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evolution of a certain generations, e.g. 10 generations, when the satisfactory simulation results
cannot be achieved by using the current fuzzy rule sets, we consider to add or delete one or more
fuzzy rules by using the insertion or the deletion operation. Computer simulations show that
after convergence of the DNA-EA, we can always find a group of parameter values for the input
fuzzy sets and the rule consequent that obtain satisfactory control performance. One typical
example of the control performance of the TS fuzzy controller designed by the DNA-EA is

shown in Fig.5. The final number of fuzzy rules is five, and the values of the design parameters
of the TS fuzzy controller are shown in Table 2.

Table 2 The values of the design parameters of the TS fuzzy controller
designed by the DNA-EA in the control of the nonlinear system (6)

ti(e) | i (7) Rule consequent
# Qeg Bei Yei ﬂ-’ei___- Bei Ye: _ P * G
1 [ o 0 6.00 250 | -120 | 244 | 0.8 0
2 -4.0 0.30 8.22 -3.00 1.05 3.33 0.008 0.14
3 -0.5 075 | 55 | -3.00 20.75 333 | 010 | O
4 05 0 7.33 400 | -0.15 556 | 014 | 0.02
5 | -1.0 | -0.15 289 | -3.50 -1.20 | 956 | 010 | 012

In order to further examine the suitability and effectiveness of the DNA-EA, another
algorithm, the DNA-GA we previously used in[6, 20| are performed in the experiments. The
DNA-GA uses DNA encoding method with two-point crossover and point mutation genetic
operations. The compared performances of the TS fuzzy controllers optimized by the two
algorithms are also given in Fig.5. From Fig.5, we can know that the control performances
of the TS fuzzy controllers designed by the two algorithms are comparable in controlling the
system (6). However, the fuzzy controller optimized by the DNA-GA employs 25 fuzzy rules,
while the one designed automatically by the DNA-EA only uses five rules. The supposition
made to explain this result is that the gene transfer operation in the DNA-EA is spreading
good rules in the population, and thus inducing the improvement of the overall performance of
the population. And, the bacterial mutation is efficient in the optimization of local portions of
chromosomes.

1—DNA-EA
/ 2-DNA-GA
0.5 ’
0
0 50 100 150

t/s

Fig.5 The performance comparison of the TS fuzzy controllers designed by the
DNA-EA and the DNA-GA in the control of the nonlinear system (6)

5 Discussions

As we know, there exist some works in literature that both fuzzy rules and tuning para-
meters are adjusted by the GAs, e.g., [3, 5, 6]. However, the bit string (0-1’s) encoding method
is often adopted by GA researchers. The configuration of the chromosome is also different from
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the one used in the DNA-EA. The genetic operations are also different. In GAs, when many
fuzzy rules are used, the length of the individual will be rather long, which will increase the
complexity of the problem. In our previous work'??!, we have proven that the DNA-GAs are
more efficient than the GAs in solving some problems. The DNA-GAs are superior to the GAs in
decreasyng the complexity of encoding and searching the solution space effectively. Though 1t 1s
interesting to compare the approach with other evolutionary computation paradigms, however
such comparisons are beyond the scope of this paper. In this paper, we emphasize on possibility
of combining the DNA computing with the soft computing. We hope the work in this paper will
be a step for future DNA computing with application to the intelligent system. Moreover, since
the encoding method and genetic operations are completely different among them, it would be
unfair to do such comparison in the simulations.

We should point out that there are several advantages in the DNA-EA:

1) In the DNA-EA, we use the new DNA encoding method that is suitable for complex
knowledge representation. That is to say, we have a four-letter alphabet Y {A,G,C,T} to
encode information, while in the GAs only need two digits, 0 and 1, for the same purpose. The
encoding length of the chromosome can be greatly shortened due to the encoding method of
four alphabets.

2) In the DNA-encoded chromosome, we can easily introduce features of the biological
DNA into the EAs and develop some new genetic operations. For example, the length of the
DNA chromosome is variable and it is easy to insert and delete parts of it by using the new
frameshift (i.e., insert and delete) mutation operations. They can be used to add (or delete)

a (or several) fuzzy rule(s) to (or from) a fuzzy controller. As such, the structure of the fuzzy
controller is automatically built, while in the previous work (e.g., |3, 5, 6]), the structure of
the fuzzy controller is first defined, then the design parameters in the input fuzzy sets and rule
consequent are designed. The latter should not be the real ”automatic design”. Similarly, some
other genetic operations at the gene level could be introduced into DNA-based algorithms to
enrich the DNA-EAs.

3) Inspired by DNA transudation process, we develop and introduce the gene transfer ope-
ration into the DNA-EA. The gene transfer operation can spread good rules in the population.
The good portions of chromosomes with high fitnesses are directly transferred to the individ-
uals with lower fitnesses, and thus induce the improvement of the overall performance of the
population. By doing so, the overall search process should be proceeded more efficient, since
the operators actuate more frequently on better rules, leading to the rapid construction of fuzzy
systems that fulfill the requirements. Also, bacterial mutation operation inspired by bacterial
genetic process is efficient in the optimization of local portions of chromosomes.

4) During the translation process from the DNA chromosome to the design parameters of
the tuzzy systems, we employ the translation process of the biological DNA, that is, from 64
triplet codes to 20 amino acids. Different codons are corresponding to the same amino acids

could speed up the search process in optimization and could quickly find the expected values
of the designed parameters.

5) In the near future, with the development of DNA computer, DNA-based soft computing!*4
will have many applications in many scientific and experiment problems. Based on Chen’s
work!23!, we will also possibly fulfill the laboratory implementation of the DNA-EA using the

biological technology, which will be useful for the DNA computer or the future DNA intelligent
computer.

6 Conclusions

An automatic design method for the TS fuzzy controller is proposed by employing the new
DNA-EA. The DNA-EA uses the DNA encoding method and genetic operators inspired from the
biological DNA and microbial evolution phenomenon. The DNA-EA can automatically design
the TS fuzzy controller and optimize the design parameters in the input fuzzy sets and the rule
consequent simultaneously. The computer simulation example is provided to demonstrate the
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effectiveness of our new method. The DNA-EA can also be employed to design the other types
of fuzzy systems.

Using the DNA encoding method, the genetic operations at gene level can be easily intro-
duced into the DNA-EA. The length of the chromosome is variable and it is easy to insert and
delete parts of the chromosome. The next step, some other DNA-based technologies in soft
computing, such as DNA-based immune algorithms and DNA-based neural networks should
be further advanced. Also, more operations at the gene level should be introduced into the
DNA-based algorithms to enrich the evolutionary methods. The DNA-based learning algo-
rithms have potential advantages in many complex practical problems. The work in this paper

1s expected to have theoretical and practical implications on applications of the fuzzy systems
and DNA-based computation.
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xAEe DNA @ EZE B #igit Takagi-Sugeno =13l 28

TxkE (g FRHE

(REXRFEEN¥EEEREKA3E LB 200051)
(E-mail: ysding@dhu.edu.cn, shshao@dhu.edu.cn)

W B R -MEFHHOET DNA ®M#ELE S ( DNA-EA ) ¥k B3hi% it —2 Takagi-
Sugeno(TS) M= Hl2s. TS B H B XKAWEEXEMRNSTE TS BN, E5E%
AERR, Zadeh BBIZBAEHBELORENSE. TS ENEBREITIHEWNF LY
m FAELE PL #2538, DNA-EA #H T H303E TS S8, F+ 5 800 4L 808 30 0] 5
MEHFEFRITE2E. DNA-EA XH G 4Y DNA SR XHB3K DNA KL & ¥ 5%
BB ERSNNEITSH. &£ DNA-EA v, SIATZHAEDIENEE KN EREB A
HEREE. B, WEIATHET DNA BERENERNZREBEE. DNA HBETEIEEE
BTREZMANERS, ETERAKFHBEREHMBRAESSIAT DNA-EA b, 4K
BRI, BadAsHERBoBERMN. EARF, S8 TXA DNA-EA XE z-;iJrEn
TS EMEHSHTER -REKRBEREEN HE. DNA-EA 68 H shithH &80 5 5 5.
FUAHEEREY, DNA-EA RHEXN, AMABIINENERREBED.

X8 DNA BT E, EER%BHRE ERZR, A%, TS BREH.

TARE WL, REXZE (BPRGAKE) BIHE, 1996~1998 F/EH M FHAEZRBRERK

FR¥YRETE. AR FRIERESR. FMEEs. DNA HE. AT4RERS. KitE. MEAEEEAZIL
0 E 26 T 7 4 42 1.

Ei4 L+, REXFRHLE. R A DNA 8. i mEaeEs.

AptthRR 1960 SFEN T RE AP HSIER R, WAREREREK, #F. 14 9M. R WA
M, FRES. EEBREEH. Tt CAD . DNA 3 # Internet 5 §8 5 5h4L.




