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Abstract In this paper, we propose a systematic and theoretically sound way to design
a global optimal fuzzy tracking controller for discrete-time fuzzy systems with the aim

of solving the discrete-time quadratic tracking problems with moving or model-following
targets under finite or infinite horizon (time). A linear-like dynamical system represen-
tation of discrete-time fuzzy system is proposed to mature the theoretical design scheme
of the discrete-time optimal fuzzy tracking controller which can achieve global mini-
mum effect. A multistage decomposition of optimization scheme is proposed to simplify
the computation, and then a segmental recursive Riccati-like equation and a difference
equation in tracing the variation of the target are derived. Moreover, in the case of
time-invariant fuzzy tracking systems, we show that the optimal tracking controller can
be obtained by just solving discrete-time algebraic Riccati-like equations and algebraic

matrix equations. An example is given to illustrate the proposed optimal fuzzy tracker
design scheme.

Key words Degree of stability, gain margin, global minimum, Riccati-like equation,
moving target, model-following.

1 Introduction

Although the researches in fuzzy modeling and fuzzy control have been quite matured!1~8),
the field of optimal fuzzy control is nearlly open'®). In particular, although fuzzy logic concept
has been introduced into tracking control'®~15] the field of theoretical approach of optimal
fuzzy tracking control is fully open. The goal of this work is to propose a systematic and
theoretically sound scheme for designing a global optimal fuzzy tracking controller to control and
stabilize a discrete-time fuzzy system in solving the discrete-time quadratic tracking problems
with moving or model-following targets under finite or infinite horizon.

Up to date, the fuzzy tracking controller is used in conceptual design only, and is always
grounded on a conventional tracker. For example, Ott and coworkers!3l included fuzzy logic
into an a— 3 tracker algorithm; Lea and coworkers!!! used fuzzy concept to develop the software
algorithm of a camera tracking system. No theoretical demonstration has been developed for
fuzzy tracking controller design in the literatures.

Stability and optimality are the most important requirements for any control system. Most
of the existed works on the stability analysis of fuzzy control are based on Takagi-Sugeno (T-
S) type fuzzy model combined with parallel distribution compensation (PDC) concept!!l and
apply Lyapunov’s method to do stability analysis. Tanaka and coworkers reduced the stability
analysis and control design problems to linear matrix inequality (LMI) problems!?4. They also
dealt with uncertainty issue!3!. This approach had been applied to several control problems such
as control of chaos/4! and of articulated vehicle!®!. A frequency shaping method for systematic

design of fuzzy controllers was also done by them!'6!. Sun and coworkers developed a separation
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scheme to design fuzzy observer and fuzzy controller independentlyl®]. Methods based on grid-
point approach!'”l and circle criterial1®1% were introduced to do stability analysis of fuzzy
control, too. Wang adopted a supervisory controller and introduced stability and robustness
measures??l, Cao proposed a decomposition principle to design a discrete-time fuzzy control
system and an equivalent principle to do stability analysis'®/. On the issue of optimal fuzzy
control, Wang developed an optimal fuzzy controller to stabilize a linear continuous time-
invariant system via Pontryagin minimum vrinciplel?’. Although fuzzy control of linear systems
could be a good starting point for a better understanding of some issues in fuzzy control
synthesis, it does not have much practical implications since using the fuzzy controller designed
for a linear system directly as the controller may not be a good choicel®.. Moreover, the cited
stability criteria may be simple, but rough to do systematic analysis and also may result in a
controller with less flexibility.

Even with the aforementioned research results on the theoretic aspect of fuzzy control, the
field of optimal fuzzy control for continuous system is still nearly open!® and that for discrete-
time system is fully open. Tanaka and others’ works mentioned in the above always treat
the stability of general linear feedback fuzzy controllers. The continuous optimal controller
constructed by Wangl¥! is suitable only to be a rough or initial controller, since the system
concerned is linear. All of them viewed the fuzzy system by individual rules, i.e., from the
local concept. It is difficult for researchers to provide a theoretical demonstration on that the
designed controller can reach global minimum eftect, if the design scheme 1s based on local
concept approach.

Technical contributions of this paper can be described as follows. A linear-like dynamical
system representation of a discrete-time fuzzy system is proposed, which makes materialize
the global optimal fuzzy tracking controller design scheme for a discrete-time fuzzy tracking
system from the global concept approach. The design scheme meets the necessary and suffi-
cient condition of global optimum. The derived discrete-time fuzzy tracking law is theoretically
demonstrated to be the best for the entire system to reach the optimal performance index. The
optimal closed-loop fuzzy tracking system is guaranteed to be exponentially stable. Further-
more, we ehcit that this kind of fuzzy tracking controller can stabilize a discrete-time fuzzy
tracking system to any prescribed degree of stability, and the corresponding closed-loop fuzzy

tracking system possesses an infinite gain margin. The design methodology is illustrated by
one example.

2 System Representation and Problem Statement

We adopt the following T-S type fuzzy model as the fuzzy tracking system describing the
given nonlinear plant:

R : IfxyisTy, ..., T, is Thi, then X(k + 1)
Y (k)

|

Ai(k)X (k) + Bi(k)u(k),
Ck)X(k), i=1,...,r, (1)

where R* denotes the ith rule of the fuzzy model; z1, ...,z, are system states; Ty, ..., T,; are
the input fuzzy terms in the ith rule; X (k) = [z1, ...,z,]T € R™is the state vector, Y (k) € R™
1s the system output vector, and u(k) € R™ is the system input (i.e., control output); and
sequences A;(k), B;(k) and C(k) are, respectively, n x n,n x m and n’ X n matrices whose
elements are real-valued functions defined on nonnegative real numbers, N. We, throughout
this paper, assume A;(k) is nonsingular for all k to ensure no deadbeat response; in that case,

X (k + 1) and u(k) cannot define X (k) uniquely, and the poles of the resultant closed-loop
system are all located at zero point.
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The desired tracking controller is then assumed to be a rule-based nonlinear fuzzy form
R* : Ify; is Sqi, ..., Y is S,r;. then u(k) = r;(k), 1=1, ...,0, (2)

where ¥y, ...,y, are the elements of output vector Y (k),Sy;, ...,S,s; are the input fuzzy
terms in the ith control rule, and u(k) or r;(k) € R™ is the plant input (i.e., control output)
vector. We can view each control rule, R*, in the above as an individual controller. Fuzzy
blending of these individual controllers, R*, : = 1, ..., 4, gives the whole fuzzy controller

)
= _w;(Y(k))ri(k), (3)

1=1

where w;( Y(k)) denotes the normalized firing-strength of the ith fuzzy control rule; i.e., w; (Y (k))

= B;(Y (k)) /Z Bi(Y (k)) with Bi(Y (k)) = II?_, us,, (y;(k)), where us., (y,(k)) is the member-

1=1
ship function of fuzzy term S;;.

In the T-S type fuzzy tracking model, the local dynamics in each individual subspace is
described by a linear model corresponding to a rule in Eq. (1) (called fuzzy subsystem), and

the overall behavior is captured by the fuzzy blending of these linear models. Hence, the overall
modeling of the closed-loop fuzzy tracking system is

X(k+1) = Zh (X (k))[Ai(k) X (k) + B;(k)u(k)] =
H(X(k))A(k)X(k) + H(X (k))B(k)W (Y (k))R(k),
Y(k) = Zh C(k)X (k) = C(k)X (), (4)

1=1

where

H(X(k)) = |hi(X(E))In ... ho(X(K)) ], W(Y (k) = [wi(Y (k) I ... ws(Y (k))Im],
Ay (k) By (k) r1(k)

Ak)=1 : |, Bk)=| : |, Rk)=]| :
A, (k) B.(k) rs(k)

with I,, and I,, denoting the identity matrices of dimension n and m, respectively, h;( X (k))
denoting the normalized firing-strength of the ith rule of the discrete-time fuzzy tracking model,

i.e., hi(X(k)) = a;( X (k))/ Zai(_X(k ) with a;(X (k)) = II7_, p1;; (z(k)), where pt;, (X (k))
1=1
is the membership function of fuzzy term T;;. Therefore, the entire discrete-time fuzzy tracking

system represented by Eq. (4) is a nonlinear but linear-like system. This kind of global system
representation will be the foundation and kernel of the following fuzzy tracker design scheme.

Then, the discrete-time optimal fuzzy tracker design scheme is to control the discrete-time
fuzzy tracking system in such a way to push the output Y (¢) close to any desired target Yd(t)
without excessive control-energy consumption. Hence, the performance index is defined, over
all sequence [u(k)]t;“l, agl21]

ki—1
= > [wuT(k)S(k)u(k) + X" (k)L1 (k)X (k) +
k=Ko

(Y (k) — Yk))T Lo (k)(Y (k) — Y(k))], (5)



480 B 3 # F 27 %

where

Ly(k) = [In—CT(k)(C(k)C (k) C(k)]" La(k)[In —
CH(k)(C(k)CT (k)" C(k)); (6)

S(k), Lo(k) and L3(k) are, respectively, m xm,n’ xn’ and n Xn nonnegative symmetric matrices;
XT(k)Li(k)X (k) is the state-trajectory penalty to produce smooth response; u" (k)S(k)u(k)
is fuel consumption; and the last term in J(u(-)) is related to error cost. Moreover, the pertor-
mance index in Eq. (5) with L;(k) in Eq. (6) may be rewritten as/?!]

ki—1

Ju() =Y [T (k)S(k)yuk) + (X (k) — X (k)T L{(k)(X (k) — X (k))), (7)
k=kq

where L(k) = Lqi(k) + CT(k)La(k)C(k) and the desired trajectory X%k) = CT(k)[C(k)-
CT(k)|"'Y%(k). Therefore, aiming at the fuzzy tracking system in Eq. (4), the quadratic
optimal tracking problem is to find the controllers, u*(:), which can minimize the quadratic
cost functional, J(u(-)), in Eq. (7) over all sequence [u(k) :;_1, or, more precisely, to find the

individual rule-based fuzzy controllers, R*(-), which can minimize the quadratic cost functional,

JRE) = Y UX(K) = X3R)TLHR)(X (k) ~ XUR)) +
k=kg
BT ()W (Y (k) S(k)W (Y (k) R (k)] (8)

over all sequences [R(k) ﬁ;"l.

3 Discrete-time Optimal Fuzzy Tracker Design
We are going to design the optimal fuzzy tracking controllers for discrete-time fuzzy track-
ing system with moving target in Subsection 3.1 and for that with model-following target in

Subsection 3.2. For brevity, we shall not state discrete-timme explicitly in the following presen-
tation.

3.1 Moving-Target Tracking Problem

In this section, we shall discuss the finite-horizon tracking problem first, and then generalize
the results into infinite-horizon tracking solutions.
3.1.1 Finite-horizon Tracking Problem

By describing the fuzzy system from the global concept in Section 2, we can simplify our
quadratic optimal fuzzy tracking problem as the issue below.

Problem 1. Given a fuzzy tracking system in Eq. (4) with X (ko) = Xo € R™, Y%(1) €
R™ and k € [ko, k1 — 1], find R*(-) to minimize J(R(-)) in Eq. (8).

The calculus-of-variations method combined with Lagrange-multiplier method can be ado-
pted directly to obtain the necessary and sufficient condition for global optimum of the above
problem. However, solving the derived nonlinear two-point-boundary-problem is at length
in computational aspect. Therefore, we pursue another circumvent approach, a multistage
decomposition of optimization scheme, to overcome this difficulty.

Lemma 1. (Multistage Decomposition) A foregoing optimization scheme is a dynamic
allocation process or a successive multistage decision process. In other words, if we let kg =

ki, ke = kN k} =k i=2,... N;Ak'=ki —kii=1,...,N, and define

ki1—1
(X (),u())= min Y [(X(k)~ X k)TL(k)(X (k) — X(K)) + T (k)S(k)u(k))



4 JH Shing-Jen WU et al.: Optimal Fuzzy Tracking Controller Design for Discrete~-time Fuzzy Systems 481

ki —1
P(X()u() =, min ) [(X(k) - XUk) LK) X (k) = X (k) + w” (R)S(k)u(k)]
kt k¥ —1 k:kg

i=1,...,N.

with regard to the state resulting from the previous decision, i.e., X (k) = Xo; X (k) =
X*(k:™Y,i=2,...,N, then

P(X () u() =& (X(),u(")) +-- + &7 (X(),u()). (9)

Since the membership functions in the fuzzy tracking controller and fuzzy tracking system
are piecewise continuous, it is reasonable to make the following assumption.

Assumption 1. All the membership functions are invariant under small perturbation;
that is, H(X (k) + eZ(k)) = H(X(k)) and W(Y (k) + ev(k)) = W(Y (k)), where Z(k) € R™
and v(k) € R™ are perturbation vectors with respect to X (k) and Y (k), respectively.

Moreover, if we enlarge N to the extent that H(X (k)) and W(Y (k)) are almost invariant
during the whole single stage, and use H; and W; to denote them at the :th stage, then Problem
1 can be translated into the following N-stage optimal fuzzy tracking issue.

Problem 2. Given a fuzzy tracking system.,

X(k+1) = HAKk)X(k)+ H;B(k)W;R(k),
Y(k) = Ck)X(k), kelky,ki—1],i=1,...,N, (10)

withkl = ko, kN =k, ki =ki™ ', i=2,...,N; X(k}) = Xo, X(k}) = X*(k{"1),i=2,...,N;
H, = H(X(k})), W; = W(Y (k})), find R*(-) to minimize J*(R(-)),
ki—1
J(R()) = D _ (X (k) — X*(k))TL(k)(X (k) — X°(k)) + R' (k)W S(k)W;R(k)].  (11)

k=ki

Thereupon, by decomposing the optimization problem into N stages, we can successively
focus on only one stage at a time. For convenience, we now define N to be the value of
the number of stages at which membership functions can be assumed to be invariant during
the whole single stage, and then, we shall use calculus-of-variations method combined with
Lagrange-multiplier method to derive the optimal fuzzy tracking controller.

Theorem 1. (Time-varying case) For the fuzzy tracking system and fuzzy tracking
controller represented, respectively, by Egs. (1) and (2), let (X (k), R*(k)), k € [ko, k1 — 1], be
the optimal solution with respect to J(R(-)) in Eq. (8), and (X (k),R" (k)), k € [k}, ki — 1],
be the ith-stage optimal solution with respect to J'(R(-)) in Eq. (11). If N > N then

1) (X*(k), R*(k)) = (X' (k), R (k)), for all k € [ki, ki —1],i=1,...,N, where kj = ko,

kN =k, kit =k, i=2,...,N;
2) for the ith stage, k € [k}, k% — 1], the optimal tracking controller is
u'” (k) = G1(k) X" (k) + g (K), (12)
and the corresponding optimal tracking law 1s
RY (k) = WHW,WH T GL(R) X" (k) + uiyy(R)), (13)
where G? (k), the feedback gain, and u’_,(k), the introduced external input, are given by

(k) = —S7Y(k)B'(k)H!m*(k+1,k})[I, +
H;B(k)S™'(k)B!(k)H{x*(k + 1,k;)] " HiA(k), (14)
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ut (k) = —S~Y(k)BY(k)H![I, + m*(k + 1,k;)H;B(k)S™ ' (k)B*(k)H;]"*b(k +1),  (15)

where 7*(k + 1,k}) is the symmetric positive semidefinte solution of the following segmental
recursive Riccati-like equation

K(k) = L(k) + A¥(k)HI K (k + 1)[I, + H;B(k)S™'(k)B" (k)H, K (k + 1)]” " H;A(k), (16)

with K (k%) = O,xn, zero matrix of dimension n X n, and b(k + 1) being the introduced target-
dependent variable, satisfying

b(k) = AT(k)HE[Ln + m(k + 1, k1) H; B(k) S~ (k) BY (k) HE] 'b(k + 1) - L(k)X%(k) (17)
with b(k!) = 0,«1; the ith-stage optimal tracking trajectory is

X (k+1) = [In+ H:Bk)S (k)BT (R)HI 7 (k+ 1,k ' H;A(K) X" (k) +
HB(k)ue:rt( )! (18)

3) the minimum performance index is

min D—-ZX"‘ Dt (kd, kDX (ko) + 0T (kG X (ko) + ¢*(kg),  (19)

R[k{]akl"l]

where the introduced variable ¢*(k) satisfies

P (k) = ¢ (k+1) — (X7 (k) — X(k)TL(k) X (k) (20)

with ¢*(k})=0,Vi=1,...,N.
Proof. 1) Since N > N, we, via Lemma 1, know (X*(k), R*(k)) is coincident with
(X* (k), R* (k)) for each stage segment. Then, for the i-th stage, k € [ki, ki — 1], we de-
fine
ky—1
S(X(),R(M) = Y (X Q) - XUNTLANX (1) - X41) + RTOWISOW,R(Q),  (21)
I=k

where X (k) = X* (k) is the initial state at time k. To simplify notations, we shall omit the
explicit time- and state-dependence; e.g., we write X for X (/) and X,y for X (I + 1) in the

following derivation. Then, by Lagrange-multiplier method, Problem 2 can be turned into the
problem of minimizing

ki1

¢ (X(),R(:)) = (X (-),R(-)) — 2 Z PY(1+1)[X 4, — H;AX — H;BW;R), (22)

where F;;; € R™ 1s the Langrange-multiplier vector. Now, we assume the optimal solutions
(X (-), R* () exist, and, according to the calculus-of-variations method, let X ()= X" (1) +
eZ(l), R1) = R" (1) + eV (1), € [k, ki — 1], where V(I) € R™? is the perturbation vector with
respect to R(l), and Z(k) = 0 since the initial state at time k is X (k) = X* (k). Substituting
these variables into Eq. (22), we have

ki —1
P(X()R() = S(XT()R'()+e > [2TLZ + VIWTISW,V]+
=k
ki —1
2¢ Y {ZTL(X" - X%+ VTWTISW,R" -
I=k

P..[Z11 — H;AZ — H;BW,V]}.
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We know that a minimum of #*(X(-), R(-)) requires

35"(}((), R())
oe

The second criteria holds positively since

&' (X (), R("))
Oe?

'e 0—0

,E:g > 0,

FPHX(),RO) _ 15717 + yIWT
5.3 =2 ) [ZLZ + VTWTSW,V] > o.

=k

Hence, the necessary and sufficient condition for optimality is

k} —1
Y {Z'L(X" - XY -PLZ1 + PLHAZ + VIWISW,RT + PY H,BW,V} = 0. (23)

Due to the facts Zz k Pl.Z = th kl[PTZ] + P, Zyi — Pl Z, and Z; = 0, we have

ki -1 k]_—-].
Z VIWI[SW,R" + BTHI P 4] + Z Z'[L(X' -X)+A"H Py — P~ Z, P = 0.
1=k
(24)
Since Z(-) and V() are independent, we conclude that Py is a zero vector and
P = ATHTP,, +L(X" - X%, (25)
uf = WiRi* = -——S—‘IBTH;‘,TPE—I—I' (26)

2) Let P(Z) KO)X™ (1) + b(l). Substituting this into Eq. (26) and regarding the term
unrelated to X* as an external input, u’_,, we can obtain u* (1) in Eq. (12), R* (I) in Eq. (13),
and then, X* (/) in Eq. (18). Accordingly, aiming at Eq. (25), we have

KXY +b = L(X* — X34+ ATHYK, ,|I, + H;BS'BTHT K, ;] 'H;AX" +
ATH?[IH + K;+1H¢BS_IBTH;I‘]-1M+1. (27)

Hence, K and b satisfy, respectively, Egs. (16) and (17) with K(k%) = 0,,x, and b(k}) = 0.«
positively to ensure that the equality in Eq. (27) holds no matter what K(I) and b(l) are.

3) Moreover, We know P, ,H;A = P* — (X" — XHTL and Pl H,B = _ui" $ from
Eqgs. (25) and (26). Substituting these into Eq. (22), we obtain

ki —1
_min #(X(),R() = Y {PTX" -PLX{, (X" - X)TLX) =
[,k —1] _
ky—1
PT(k)X" (k) — ) (X" - X)TLX? =

~=|=T . e - 3k .
XY K(k)X" +b1(k)X" + ¢'(k), (28)

for all k € [ki, ki — 1], where ¢*(k) is the introduced variable defined as

ki —1
(k) = - d o (xt - xHTLxe (29)
=k
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with ¢*(k?) = 0. Obviously, (k) satisfies Eq. (20), and accordingly, the minimum performance
index is obtained as in Eq. (19). ]

So far, we have solved the optimal fuzzy tracking problem by finding the optimal solution
to the general time-varying case. We are now eager to know if a time-invariant fuzzy tracking
system will give rise to time-invariant linear optimal tracking law in each stage. Some useful
lemmas are demonstrated below in order to develop the design scheme of optimal fuzzy tracking
law regarding to the time-invariant fuzzy tracking systems.

Lemma 2. Consider X (k+ 1) = f(X(k), u(k),t) with X (k}) = X, as the fixed-target
tracking system. Let the pair (X “(1), u ( )) be the infinite-horizon optimal solution with the

performance index J(u Z fo(X (k),u(k),t), and the pair (X (-),@*(-)) be the finite-
k=k}
ki —1
horizon optimal solution with respect to J(u(:) Z fo(X(k),u(k),t), where both f(-,-,-)
k=K

and fq(:,-,:) are mapping from R"™ x R™ x R to piecewise—continuous real-valued functions. If
X (k%) is a free point, then (X (k),@*(k)) = (X*(k),u*(k)) for all k € [k}, ki — 1].

Lemma 3. (A;, B;) is completely controllable (c.c.) for all 2 = 1,...,r, if and only if
rank(A], — H(X(k))A H(X(k))B] = n, for all A € o(H(X(k))A), where o(H(X(k))A)
denotes the spectrum of H(X (k))A

Lemma 4. (A;,C) is completely observable (c.0.) for all : =1,...,r, if and only if

AL, — H(X(k)A"
C }

rank

=n, YA€ o(H(X(k))A).

Then, a more implementable and important theorem for the time-invariant fuzzy tracking
system can be extracted on the ground of the aforementioned lemmas and Theorem 1, which
concerns the time-varying fuzzy tracking system.

Theorem 2. (Time-invariant case) Consider the time-invariant fuzzy tracking system
and fuzzy tracking controller described, respectively, by Eqs. (1) and (2). For the case that

the moving target remains invariant during the whole single stage, i.e., X d(k) X, < , Vk €
k3, Kkt — 1], let (X*(k), R*(k)), k € [ko, k1 — 1], denote the optimal solutlon with respect to
J(R(")) in Eq. (8), (X* (k),R' (k)), k € [ki, ki — 1], denote the ith-stage optimal solution
with respect to J*(R(-)) in Eq. (11), and (Xi;(k),Ri(k)), k € [ki, k% — 1], be the ith-stage

asymptotically optimal solution with respect to

JL(RO) = 30 (X DTL(X (k) ~ X) + BT (k)W:SWiR(K)). (30)
=k}

If N> N, (A;,B;) is c.c. and (4, C)isc.o., forallz=1,...,r then,

1) (X*(k), R*(k)) = (X (k), Ri,(k)), Vk € [ki, ki—1],i=1,...,N, where ki = ki~ i =
2,...,N, and k:Ul Zkg;

2) for the ith stage, k € [k{, k% — 1], the optimal tracking law is

R, (k) = W WiW G XL (k) + uly] (31)

with the constant feedback gain, G%, and the external input, u®_,, calculated by
Gy = —-S'BTHI#I,+ H;BS 'BTHI# | 'H,A, (32)
wly, = -S'BTHI|IL,+7H;BS'BTHI|"'%" (33)

b = —[I,— ATHI(I, + #H;BS~*BTHT)" |- x¢ (34)
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where 7* is the unique symmetric positive semidefinte solution of the following discrete-time
algebraic Riccati-like equation

K=L+ATH'K[I,+ H;BS'BTHIK| 'H;A: (35)
the ith-stage optimal tracking trajectory is
X (k+1)=[I,+ H;BS'BTHF#"|"'H;AX*(k) + H; Bu'_,; (36)

3) the minimum performance index is

N T _ _ T N _ o
R0 J(RC)) =3 Xoo (R)T X0 (k) + B X (kY) + ' (k)), (37)
0:F171 i=1

where ¢*(ki) =0 foralli=1,..., N and
o'(k) = ok + 1) — (X* (k) - X))TLX]. (38)

Proof. 1) Based on Theorem 1, we know (X*(k), R*(k)) = (X* (k), R" (k)),k € [k}, k* —
1]. Furthermore, via Lemma 2, we obtain (X (k), R (k)) = (X (k), R. (k)) for the stage
with constant target. Hence, the equivalence (X*(k), R*(k)) = (X°_(k), R (k)) exists posi-
tively on the time in period k € [k, k! — 1], =1,..., N, if the target remain invariant during
the whole single stage.

2) The optimal solution for each stage indeed follows the optimal solution in Theorem 1
except that all parameters in Eqgs. (10) and (11) are constant now. It is easy to show that the
asymptotically solution of the recursive Riccati-like equation in Eq. (16) is also the steady-state
solution, i.e., limpi_, n(k, k*) = 7, which results in limy: _, o, b(k) = b

3) Moreover, we know, from Lemmas 3 and 4, (A;,B;) is c.c.,, Vi = 1,...,r, if and only if
rank|Al, — H{(X(k))A H(X(k))B] =n, VA € o(H(X(k))A), and accordingly, rank|{Al, —
H;A HB)=n,VA€o(H;A),i=1,...,N. Also, we know (4;,C)isc.o.,Vi=1,...,r, if and
[ A, — H(X(k))A A, — H;A|

C =n, VA € o(H(X (k))A), which ensures rank O _

n, VA € J(H;A). Therefore, (A; B;) c.c. and (A;,C) coo.,Vi=1,...,r, guarantee, respectively,
(H;A,H;B) c.c. and (H;A,C) c.o.,Vi=1,..., N, where r and N are, respectively, the number
of rules of the fuzzy system in Eq. (1), and the number of stages of the process described by
the dynamical fuzzy system in Eq. (10). Accordingly, by Lemma 5 in Appendix, we know the
algebraic Riccati-like equation in Eq. (35) has unique symmetric positive semidefinte solution.
Hence, the proof is completed.

Thereupon, a time-invariant fuzzy tracking system can still give rise to the time-invariant
linear optimal fuzzy tracking law for the stage with constant target.
3.1.2 Infinite-horizon Tracking Problem

The purpose of this section is to design the optimal fuzzy tracking controller concerning
with the infinite-horizon tracking problem, which is the case that the operating time goes to
infinity or is much larger than the time-constant of the dynamic system. We notice, as in optimal
control problem, the issue: Does the minimal tracking performance index finitely exist? We
introduce the concept proposed by Jack Machi and Aaron Strauss'??: If the linearized system
of a nonlinear system with respect to (w.r.t) some state X, € R" is c.c., then X, is an interior
point of the controllable set (the set of all initial points which can be steered to the target).
Now, the linearized system of the fuzzy system in Eq. (4) with respect to point X, is

only if rank

X(k+1) = H(X,)Ak)X (k) + H(X,)B(k)u(k). (39)
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Therefore, to ensure finite tracking cost, it is necessary that the pair (H(X,)A(:), H(X,)B(:))
is controllable at all time and for all X, € R™. Furthermore, there is another obvious constraint
that the moving target will remain invariant as time increasing to some extent, L.e., X d(k) =
X%k + 1), Vk > K,, where K, is a large positive number. We can now find out the design
scheme of the infinite-horizon optimal fuzzy tracking controller.

Theorem 3.(Time-varying case) For the fuzzy tracking system and fuzzy tracking con-
troller described by Egs. (1) and (2), respectively, let (X2 (k), R, (k)), k € [ko,00), be the
optimal solution with respect to

Jo(R()) = Y [(X(k)— X% k)TL(k)(X (k) — X (k)
k=ko
+RT(RYWT(Y (k))S(k)W (Y (k))R()], (40)

and (X"* (k), R* (k)), k € [k}, ki —1], be the ith-stage optimal solution with respect to JH(R(-))
in Eq. (11) except that kY = oo now. If N > N, X%(k) remains invariant for all ¥ > K,, and
the linearized fuzzy system in Eq. (39) is controllable, then

1) (X2 (k), R* (k) = (X" (k),R" (k)), k € [k}, ki—1],i=1,...,N, where k} = k™', i =
2,...,N, ké — kg, k{q — OG0,

2) for the ith stage, k € [k}, ki — 1], ¢ = 1,..., N, the optimal tracking law, the cor-
responding optimal tracking controller and the optimal tracking trajectory satisfy the same
corresponding equations in Theorem 1, except that kY = co; the minimum performance index,
ming, ., Joo(R()), is finite and calculated by Eq. (19) except that the boundary condition of
o™ (k) in Eq. (20) for the Nth stage is ¢* (00) = 0 now.

Proof. This theorem obviously holds with Theorem 1. For the Nth stage, the con-
trollability of the fuzzy system can ensure the existence of the limit value of n™V(k, k;); ie.,
AN (k) = limg, 500 ™ (k, k1) exists for all k € [k, k1], and 77V (k) is still the symmetric positive
semidefinite solution of the segmental recursive Riccati-like equation in Eq. (16). 1

For the time-invariant case, the pair (H(X,)A, H(X,)B) being completely controllable
1s equivalent to rank{\l, — H(X,)A, H(X,)B] =n, VA € 0(H(X,)A), and this condition,
by Lemma 3, can be satisfied if (A;, B;) is c.c., for all ¢ = 1,...,r. So, we need the following
assumption as the prerequisite to ensure finite tracking cost in the time-invariant infinite-horizon
tracking controller design.

Assumption 2. (A;,B;)iscc., foralli=1,...,7.

Theorem 4. (Time-invariant case) Consider the time-invariant fuzzy tracking system
and fuzzy tracking controller described, respectively, by Eqgs. (1) and (2). For the case that the
moving target remains invariant during the whole single stage, if N > N, (4;, B;) is c.c. and
(A;,C) isc.o., foralli=1,...,r, then,

1) (X (k),R: (k) = (Xi;(k),R;(k)), ke lki,k® —1],1 =1,...,N, where k} = ko,
kN = oo, ki = k"', i = 2,...,N; R (k) is the ith-stage asymptotically optimal tracking
law in Eq. (31), and X Z;(k) 15 the corresponding asymptotically optimal tracking trajectory in
Eq. (36), where 7* is the unique symmetric positive semidefinte solution of the discrete-time
algebraic Riccati-like equation in Eq. (35);

2) the minimum performance index, ming;, _, Joo(R(+)), is finite and calculated by Eq. (37)
except that the boundary condition of ¢ (k) in Eq. (38) for the Nth stage is ™ (c0) = 0 now.

Proot. This theorem obviously holds according to Theorem 2. )

3.2 Model-Following Tracking Problem

Now, we shall be devoted to the model-following tracking problem, where the tracked
target 1s the response of some reference model. Similar to the previous section, the finite-horizon
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tracking problem is discussed first. The derived optimal solutions can then be generalized into
those for infinite-horizon problem as we did in the last section. We adopt the same T-S type

fuzzy tracking system as in Section 2, and thereupon, the standard model-following tracking
problem can be described as the following issue.

Problem 3. Given a fuzzy tracking system in Eq. (4) with X (kg) = Xg € R™ and
k € lko, k1 — 1), find R*(-) to minimize J(R(-)) in Eq. (8), where the desired output Y %(k) is
the response of a linear system or model,

zik+1) = F(k)z1(k)+ Ji(k)v(k),
Y%k) = Ei(k)zi(k) (41)

with z,(ko) = 219, to the command input (k) € R™ , which is the zero response of the system:
Zg(k + 1) ~ Fg(k)Zg(k) and V(k) — Eg(k)z;g(k) with Zg(k[}) = Z920 [21], where Zl(k) - Rh' and
zo(k) € R" are system states; Fi(k), Ji(k), Ei(k), Fo(k) and E3(k) are matrices of h X h,
hxm',n' x h, ¥ x ' and m’ x k', respectively.

Accordingly, the desired tracked system, via letting Z(k) = [z (k) z; (k)]T, can be
rewritten as the following augmented system!?1]

CFi(k) Ty (k) Eq(k))
L On xr Fa(k) J
Yik) = [Er(k) OwwwlZ(k) = E(k)Z(K) (42)

N
~
s
-
P
I
N
~
o5
e
]
T}
~
ey
~—
N
~
i
~—r’

We further define a new variable X (k) = [X (k) ZY(%)]T[2 and then Problem 3 can be
simplified as the issue below.

Problem 4. Given a fuzzy tracking system

X (k+1) = A(k)X (k) + B(k)W (Y (k))R(k) (43)
with X (ko) = X € R*h+7 and k € ko, k1 — 1], find R*(-) to minimize

ki1—1
JR()) = Y (X (k)L(k)X (k) + R (R)WT (Y (K))S(k)W (Y (k) R(E)] (44)
k=kg

where the parameters are E'(k) =

| H(k)B(k)] ... [HEAK) Onpx(hin
_O(h—;-h’)xm}’ Alk) = [ :

]
L(k) ~L(k)C (k)[C(k)C™ (k)] ~ E(k)

L(k) = .
) [—ET(k)[C(k)C'T(k)]“IC'(k)L(k) E*(k)[C(k)CT (k)] C(k)L(k)CT (K)[C(K)CT (k)] 1 E(k) _

Obviously, the optimal solutions for the augmented optimal quadratic tracking problem in
Problem 4 follow from Theorem 1 except that X %(-) in Problem 2 are zero vectors now. Then,
via complicated matrix manipulations, we can obtain the optimal solutions for the original
optimal quadratic tracking problem in Problem 3 as follows. The identity input weighting
factor is set to get more concise formula in the remainder of this section, i.e., S(-) = I,,, for all
time steps.

Theorem 5. (Time-varying case) For the fuzzy tracking system and fuzzy tracking
controller represented, respectively, by Egs. (1) and (2), let (X~ (k), R*(k)), k € [ko, k1 — 1], be
the optimal solution with respect to J(R(-)) in Eq. (8), and (X* (k), R* (k)), k € [k}, ki —1], be
the ith-stage optimal solution with respect to J*(R(-)) in Eq. (11), where the desired trajectory,
X %(k), comes from Y%(k) = CX (k) and Y%(k) is the output of the tracked model in Eq. (41).
If N > N then
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1) (X*(k), R*(k)) = (X* (k), R" (k)), for all k € [k}, ki —1],i=1,..., N, where k} = ko,
kN =k, ki =k} ', i=2,...,N;
2) for the ith stage, k € [k}, k} — 1], the optimal tracking controller is

u' (k) = Gi(k) X" (k) + G3(k)Z (k), (45)
and the corresponding optimal tracking law 1s
RY (k) = WEWWT) G ()X (k) + G (k) Z (k)] (46)
where the feedback gain, Gi(k), and the introduced matrix, G%(k), are calculated by

Gi(k) = —-BY(k)H m(k+1,E)I,+ H;Bk)BY(K)HIn"(k+ 1,k H;A(k), (47)
i(k) = —BT(k)HF[I, +7i(k+1,k))H;B(k)BT(k)HT) 'ni, (k + 1,k)F(k), (48)

where m*(k + 1,k?) is the symmetric positive semidefinte solution of the following segmental
recursive Riccati-like equation

K(k) = L(k) + AT(R)HTK (k + 1)[I. + H:B(k)B*())HF K (k + 1)] " H: A(k), ~ (49)

with K (k%) = 0,, and 73, (k + 1, k?) satisfies

Ky (k) = FY(k)Kau(k+ V)[I,+ H;B(k)BY(k)HIn (k +1,k%)] 1 H; A(k) -
ET (k)[C(k)CT (k)] ' C(k)L(k) (50)

with K1 (k%) = O(hsnryxn; the ith-stage optimal tracking trajectory is

XY (k+1) = [I, +H;B(k)BY(K)HI 7' (k + 1,k *H; A(k) X" (k) +
H; B(k)G5(k) Z(k); (51)

3) the minimum performance index is

N ok L : . : . T T . : :
min  J(R(-)) = Y X' (kg)ri(ko, k)X (k§) +2X7 (kf)my (kb ki) Z (k) +

Rirg,ky —1] —
Z" (ko) maa (ks k1) Z (kp), (52)

where the introduced variable 7%, (k) satisfies

Koa(k) = —F (k)mh (k+1,k})[I, + H;B(k)BY(k)HIn*(k + 1, k)] H,;B(k)BT (k) -
HEri (k+1,k%) - F(k) + FT (k) Kaa(k + 1)F(k) + E*(k)[C(k)CT (k)]
C(k)L(k)CT (K)[C(k)CT (k)] E(k), (53)

with Kgg(ki) = O(h-{—h')x(h——h’): Vi = 1,..., V.
Proof. 1) For notation simplification, the identity and zero matrices of any dimension
will be denoted by I and 0, respectively. Grounding on Theorem 1, we have

XU (k+1) = [+ Bk)BT(k)#i(k + 1, k' OTAR) X (k) (54)

u' (k) = —~ BT (k)7 (k + 1,k%)[I + B(k)BT (k)# (k+1 kDLAMR) X (k), (55)
R" (k) = WT[W-WT} u’ (k), (56)

min J(R(-)) Zx (k(, 7k E)XE (kD) (57)

Rikg,ky~1)
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where 7*(k, k}) is the symmetric positive semidefinite solution of the the following segmental
recursive Riccati-like equation

L

K(k) = AT(k)K(k + 1)[I + B(k)BT(k)K(k + 1)]"*A(k) + L(k), K(k}) =0.  (58)

- K(k) Kz (k)]

Now, let K(k) = | K21(k) Kaa(k)

. Then, we obtain u* (k) in Eq. (45) from Eq. (55) via

I+ H,BBTHYK H;BBTHTYKEL1™"
0 I |

I+ H;BB'H'K|™! ~[I+ H;BBTHK|"*H,BBTHYK], ]
0 I ’

L]
be—

L

and BYHYK}, — BTHYK[I + H;BBTHYK|"'H;BBTHYKJ} = BTH'[I + KH;BBTHT| 1.
K31, where the time-dependence is omitted for notation simplification; K (k) in Eq. (49), K2,
in Eq. (50) and K23 in Eq. (53) are derived from Eq. (58) with the aid of

I-K[I+HBBTHIK|""H;BB"H} = [I + KH;BBTH|!;

and then we have X* (k) in Eq. (51) and ming, . _, J(R()) n Eq. (52). C
As for the time-invariant system, since the target for Problem 4 can be viewed as staying
at zero, we can use Lemma 2 to obtain the following equality

X*(k)= XV (k) = X (k), Vk € [ki, ki — 1], (59)

where i = 1,..., N and k§ = ko, k7' = k1,k} = ki"l,i = 2,...,N. Then, via Lemmas 3 and 4
in Section 3.1 and Lemma 5 in the Appendix, we can derive the design scheme of time-invariant
fuzzy tracker for model-following target.

Theorem 6. (Time-invariant case) Consider the time-invariant fuzzy tracking system
and fuzzy tracking controller described, respectively, by Eqs. (1) and (2). Let (X" (k), R*(k)),
k € [ko, k1 — 1], denote the optimal solution with respect to J(R(-)) in Eq. (8), (X* (k), R* (k)),
k € [k, k? — 1], denote the ith-stage optimal solution with respect to J*(R(-)) in Eq. (11), and
(X" (k), R._(k)), k € [k, ki — 1], be the ith-stage asymptotically optimal solution with respect
to J: (R(-)) in Eq. (30), where the desired trajectory, X%(k), comes from Y%(k) = CX*(k)
and Y %(k) is the output of the time-invariant tracked model in Eq. (41). If N > N, (A;, B;) is
c.c. and (A;,C) is c.o., for all i =1,...,r, then,

1) (X*(k), R*(k)) = (X (k),R".(k)), Vk € [ki,ki —1],i=1,...,N — 1, where k} =
kPl i=2,...,N, k} = ko;

2) for the ith stage, k € [k, k* — 1], the optimal tracking controller is

U (k) = G1 X o (k) + G5 Z(k), (60)
and the corresponding optimal tracking law 1s
R (k) = WIWWT| G X (k) + G5 Z (k) (61)
where the feedback gain, G%, and the introduced matrix, G%, are calculated by
G = —-BYH!'#'(I,+ H;BBTH/#'|"'H;A, (62)
G: = -BTHT[I,+#H;BBTHY| '#iF, (63)

where 7 is the unique symmetric positive semidefinte solution of the following discrete-time
algebraic Riccati-like equation

K=L+ATHYK[I,+ H;BBTH K| 'H;A, (64)
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and 7%, satisfies
Ky = FYKo (I, + H;BBTH 7|"'H;A — E*[CC"]7'CL, (65)
the 7th-stage optimal tracking trajectory 1is
XY (k+1)=[I,+ H;BBTHI 7| "H;AX"_(k) + H;BG% Z(k); (66)

3) the minimum performance index is

N
o ¥ . _ - X o ¥ : T i : .
min J(R(-)) =) Xi, (k§)T XL (k) +2X 5, (ko) Z(ko) + Z " (ko) Z(kg), (67)
1=1

Rikg,kq—1]
where the introduced variable 7%, satisfies

Koy = —FTa[l, + H:BBTH 7| 'H;BBTH 7}, F + FTKpF
E‘lcct | lecLcticcM 1 E. (68)

Proof. Grounded on Theorem 5, the proof follows the derivation in Theorems 2.

For model-following target, the infinite tracking cost is unavoidable. Apart from this, the
scheme of generalizing the optimal tracking solution from finite-horizon problem to infinite-
horizon problem for model-following target is just the same as that for moving target in Section
3.1.2. Therefore, we shall not demonstrate the solutions of infinite-horizon problem with respect
to model-following tracking here.

4 Numerical Simulations
In this section, we consider a computer simulated trunk-trailer system to track a moving

target or a model-following target. The computer simulated truck-trailer physical system was
described by Tanaka and Sano!1% as

ri(k+1) = (1—v-t'/LNzy(k)+v-t'/l u(k),
zo(k+1) = xzo(k)+v-t'/L -x1(k),
il?g(k‘ + 1) — 333(k) + v - t! y Siﬂ($2(k) + v f"/ZLjf . a:l(k)),

where [ is the length of truck, L’ is the length of trailer, ¢’ is the sampling time, and v is

the constant speed of the backward movement. Then, they used the following fuzzy model to
represent the above mathematical model:

R' : If z(k) = z2(k) + v - t'/{2L'} - ;1 (k) is about 0, then X (k + 1) = A, X (k) + Byu(k)

R? . If z(k) = za(k) +v-t'/{2L'} - x1(k) is about 7 or —m, then X (k +1) = A3 X (k) + Bau(k).
and the system output is Y (k) = CX (k) withC =[001],1 =28, L' =55 v=-1.0,t = 2.0
and X (k) = [z1(k), z2(k),z3(k)]", where

1.3636 0 0 1.3636 0 0 ~0.7143
A;=1-03636 1.0 0 |, Ay=|-03636 1.0 0 |, B =B, = 0
0.0120 —2.0 1.0 0 ~0.0064 1.0 0

Grounding on this fuzzy system, we assume our fuzzy tracking controller as

R' : Ifz(k) = zy(k) +v-t'/{2L'} - z,(k) is about 0, then u(k) = r; (k)
R? : Ifz(k) = z4(k) +v-t'/{2L'} - z,(k) is about 7 or —m, then u(k) = ro(k).
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With the chosen membership functions!?3!, the firing-strengths are

hi(X(2) = aulk)=(1-1/(1+exp(=3(z(k) — 7/2)))) - (1/(1 + exp(-3(2(k) + 7/2)))),
ho(X (1)) = oaz(k) =1—ai(k),

which, in this case, are also the normalized firing-strengths of the rules for fuzzy system and
controller. Therefore, the linear-like dynamical fuzzy system representation for the nonlinear
Ay B, 1

LAZ*':B: Bg_ij_Tg_j

H(X (K)) = [ (X (k) ha(X (k)] and W(Y (k) = [w1 (Y (k) ws(¥ (k)]
We sample the continuous signals in such a frequency that the membership functions are
almost 1invariant during the single sampling period, and then, the decomposition stages will be
coincident with the sampling sequences in finite-horizon case. Hence, by choosing the number

of stages as N = 100, we have the following N linear dynamical fuzzy systems

truck-trailer system can be described by Eq. (4) with A =

L

X(k+1) = H;AX(k)+ H;BW;R(k), i =1,...,100,

Y(k) = CX(k) (69)
where Hy = H(Xy), Wy = W (Y (kg)), k} = 0; H; = 1"17(){;"(&;_1))1r W, = W(X*(ki"l)),
1 = 2,...,100. The performance index for finite-horizon tracking problem is
99
J(R()) =) [e"(k)Le(k) + RT (R)W™ (k)SW (k)R(k)], (70)
k=0

and that for infinite-horizon tracking problem is

Joo(R(-)) = ) _leT(k)Le(k) + RT (k)W™ (k)SW (k)R(k)] (71)

k=0

Since no final error penalty is emphasized, the optimal tracking trajectory with step’wise or
model-following target for these two are coincident obviously. Now, we can design the optimal
fuzzy tracking controllers for the trunk-trailer tracking system in both cases of moving target
and modeling-following target by the proposed design scheme in Section 3.

Though the fuzzy subsystem is unstable (the spectrum of system matrix o(A4;) = {1, 1,
1.36}, ¢« = 1,2), it is time-invariant and well-behaved; i.e., the fuzzy subsystem is c.c. and c.o.
(rank[AI3 — A; B;] = rank[Al3 — A; C] = 3, for all A € 0(A;)). Hence, the dynamical system
describing the dynamics of each stage is also well-behaved according to Lemmas 3 and 4.

For the moving-target tracking problem, we can obtain, by Theorem 2, the optimal tra-
jectory of the closed-loop fuzzy tracking system with the designed optimal fuzzy tracking con-
troller. The position responses of the resultant closed-loop fuzzy tracking system for step or
step’wise targets with different input weighting factors (S = 1 or 0.01) are shown in Fig.1. As
for the model-following-target case, since each fuzzy subsystem 1is well-behaved as mentioned
above, the optimal fuzzy tracking controller and the corresponding tracking trajectory can be
obtained according to Theorem 6. Fig.2 shows the position responses of the resultant closed-
loop fuzzy tracking system for the targets from the tracked model with various parameters
((Fy, F3) = (1,1), (1,0.9), (0.85,0.85) and (0.45,0.45)). Our simulation results also show that
the designed optimal fuzzy tracking controller can efhiciently push the simulated trunk-trailer
system to trace the target as soon as possible.
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Fig.1 Position responses of the discrete-time fuzzy tracking system with the
designed optimal fuzzy tracking controllers in Subsection 3.1 for step
and step’wise targets at the two input weighting factors: S =1 and 5 = 0.01
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Fig.2 Position responses of the discrete-time fuzzy tracking system with the designed optimal
fuzzy tracking controllers in Subsection 3.2 for the targets from the tracked model with
the four different parameters: (F1, F2) = (1,0.9), (1,0.4), (0.9,0.4) and (0.4, 0.4)

5 Conclusions

A linear-like dynamical system representation of discrete-timne fuzzy systems was proposed
in this paper. Based on this representation, the design scheme of global optimal fuzzy tracking
controllers for discrete-time fuzzy systems was derived theoretically. A multistage decomposi-
tion of optimization scheme was proposed to design the global optimal fuzzy tracking controller
more efficiently. Simulation results have manifested that the designed optimal fuzzy tracking
controllers can effectively drive a fuzzy system to trace the target profile in short time.
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Appendix

Lemma 5. For a linear time-invariant dynamical fuzzy system

X (k+1) = H;AX (k) + H; BW;R(k), (72)
Y (k) = CX (k).

with X (k¢) known. If (H; A, H;B) is stabilizable and (H;A, C) is detectable, then,
1) there exists an unique n X n symmetric positive semidefinite solution, ", of the discrete-time
algebraic Riccati-like equation

K=L+ATHFK[I, + HiBS 'B"H; K| 'H. A; (73)
2) the asymptotically optimal control law 1s
R (k) = —WEW;WE] 'S *BTHI#[I, + HiBS™'BTH 7|7 ' H:AX ' (k), k € [k, 00),  (74)

which minimizes Ji (R(-)) = Y oo, [X T (k) LX (k) + RY (YW SW,R(k)];
3) and the optimal closed-loop fuzzy system

X (k+1)=[I, + H;BST'BTHI 7 ' H;AX(k), k € [k, o0) (75)

is asymptotically and exponentially stable.
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