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Abstract This paper discusses the synthesis of compensators for plants which can
be represented using a Takagi-Sugeno (T-S) fuzzy model. The resulting compensator
designs, called PDC controllers, are parameter dependent and mirror the structure of
the T-S plant model. This paper extends the existing work on state feedback PDC
controllers by introducing the notion of a dynamic PDC controller. The paper contains
three new results. The first result provides a more relaxed version of previously stated
conditions that are sufficient for the existence of a quadratically stabilizing state feedback
PDC controller. The second result provides analogous conditions that are suflicient for
the existence of a quadratically stabilizing dynamic PDC controller. The third result
deals with the performance-oriented controller synthesis for T-S fuzzy model.
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1 Introduction
In recent years, engineers have successfully utilized fuzzy logic in a variety of industrial

control applications. As the interest in fuzzy systems has increased, researchers have considered
the stability analysis of these systems using a variety of modeling and control frameworks!!~®!.
One of the modeling techniques which has attracted a great deal of attention is the approach of
Takagi-Sugeno fuzzy model'®!. In this approach, local dynamics in different state space regions
are represented by linear models and the overall system is represented as the fuzzy interpolation
of these linear models!®?l. The appeal of the T-S model is that the stability and performance
characteristics of the system can be analyzed using a Lyapunov approach!®~19, It has also
been demonstrated that sufficient conditions for the stability and performance of a system are
stated in terms of the feasibility of a set of linear matrix inequalities (LMIs)11~131 A fur-
ther and significant step has also been taken to utilize Lyapunov-function based control design
techniques to the control synthesis problem for T-S models. The so-called parallel distributed
compensation (PDC)!1!41%] is one such control design framework that has been proposed and
developed over the last few years. The PDC control structure utilizes a nonlinear state feedback
controller which mirrors the structure of the associated T-S model. It has also been shown that
within the framework of T-S fuzzy model and PDC control design, design conditions for the
stability and performance of a system can be formulated into an LMI problem!(14'5!. The gains
of the controller can be determined automatically using this LMI formulation. This is a signif-
icant finding in the sense that there exist very efficient numerical algorithms for determining
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the feasibility of LMIs, so even large-scale analysis and design problems are computationally
tractable!!®17]  Applications of T-S model together with PDC controller have achieved many
successes in real systems!18~20]

Although the past few years have witnessed a rapid growth of interest in the controller syn-
thesis of T-S models, only a few of these results discussed the output feedback controller(21:22!.
Moreover, most of these results have concentrated only on the stabilization problem and do not
address the design objectives such as disturbance attenuation, passivity, input constraint and
so on. In this paper, we try to solve these problems. The notion of DPDC (dynamic parallel
distributed compensation) 23] will be introduced in this paper. This DPDC controller is dif-
ferent from the fuzzy controller proposed in {22] where a fuzzy regulator and a fuzzy observer
are designed separately and then combined together. Three results will be provided in this
paper, The first result is a relaxed version of the LMI conditions stated in [22,24] that are sufhi-
cient for the existence of a quadratically stabilizing state feedback PDC controller. The second
result is an analogous set of LMI conditions that are sufficient for the existence of a quadrat-
ically stabilizing dynamic PDC controller. The third result is the solution to the problem of
performance-oriented controller synthesis for T-S models[?3]. In this result, the controller syn-
thesis is again formulated as an LMI problem. Multiple design objectives can also be achieved
by finding a feasible solution to an augmented LMI problem as in [26].

Throughout the paper, the notation M > 0 will mean that M is positive definite symmetric
matrix, and the notation £(A, P) will denote the mapping from R"*™ x R"*" to R™*™ defined
such that (A, P) — PA + ATP'. The same holds for £L(AT,QT) = AQ + QTAT. P~ T is
the same as (P~1)'. Rt = [0, oo0). LE(R") is defined as the set of all p-dimensional vector
valued functions u(t),t € R* such that ||u|2 = ([, ||u(t)||?dt)!/? < oo and L§(R™T) is its
extended space which is defined as the set of the vector-valued functions u(t), t € R™ such that
lulls = (fy |lw(t)]|? dt)/? < oo, for all T € R+

The remaining of the paper is organized as follows: Section 2 describes the T-S fuzzy model
and PDC controller. Section 3 presents a set of relaxed LMI design conditions which can be used
to select the compensator gains for the state feedback PDC controller so that the closed loop
system is globally stable. Section 4 introduces the notion of DPDC controller and provides an
analogous set of LMI conditions for the stabilizing DPDC controller design. Section 5 addressed
the problem of performance-oriented DPDC controller design for T-S Model. Section 6 contains
an illustrative application. Concluding remarks are collected in Section 7.

2 Takagi-Sugeno Model & Parallel Distributed Compensators

Takagi-Sugeno Model
A Takagi-Sugeno fuzzy model for a dynamic system consists of a finite set of fuzzy IF ...

THEN rules expressed in the form:
Dynamaic Part :

Rule i:  IF py(t) is M;; --- and pi(t) is M,
THEN :B(t) = A,‘_fﬂ(t) + B,,;,'u,(t).

QOutput Part :
Rule 7: IF pi(t) is M, --- and pi(t) is M,

THEN y(t) = C;z(t).
where ®(t), u(t), y(t), and p(t) respectively denote the state, input, output, and parameter
vectors. The jth component of p(t) is denoted by p;(t), and the fuzzy membership tunction
associated with the ith rule and jth parameter component is denoted by M;;. Each p;(t) is a
measurable time-varying quantity. In general, these parameters may be functions of the state
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variables, external disturbances, and/or time.
There are two functions of p(t) associated with each rule. The first function is called the

truth value. The truth value for the ith rule is defined by the equation

w;(p(t)) = T;_y My, (p;(2)).

Throughout this paper, we will assume that each w; is a non-negative function and that the
truth value of at least one rule is always nonzero. The second function is called the firing

probability. The firing probability for the ¢th rule is defined by the equation

w; (p(t))
Z::1 Wy (p(t)) j

where r denotes the number of rules in the rule base. Under the previously stated assumptions,
this is alway a well defined function taking values between 0 and 1, and the sum of all the firing

probabilities 1s identically equal to 1.
The dynamics described by the T-S model evolve according to the system of equations

hi(p(t)) =

T = Zhi(p)(}lim + B;u), (1a)

1—=1

Y = Zhi(p)cﬂl’- (1b)
1=1

Thus the T-S model description can also be viewed as a parameter-dependent interpolation
between linear models; however, the exact classification of the resultant system depends on the
nature of the parameters. For example, if each », 1s a known function of time, then the T-5
model describes a linear time-varying system. If, on the other hand, each p; is a function of the
state variables, then the T-S model describes an autonomous nonlinear system:.
Parallel Distributed Compensation

A T-S model rule base can also be used to describe a gain-scheduled static or dynamic
compensator. This rule-based structure is particularly advantageous when the plant has also
been described using a T-S model. The state feedback case was examined in [14,15] where they
referred to this rule-based feedback structure as parallel distributed compensation (PDC). This
controller structure incorporates a set of fuzzy rules expressed in the form:

Rule i: IF py(t) is M;; --- and pi(t) is M,
THEN wu(t) = K;z(t),

where : =1,2,---,7.

The output of the PDC controller is determined by the summation

1==1

It is important to note that the T-S models of the plant and the PDC compensator contain the
same number of rules, and that the membership functions for corresponding rules are the same.
This mirrored structure is necessary for the LMI-based analysis and design procedures. Later
in this paper, we will also extend these design procedures to include dynamic compensators.
Stabilizing PDC Controller Design

For the state feedback case, the design variables are the gain matrices K;, 1 < ¢ < r in
the PDC controller. The following result given in [14,15] states conditions which are sufficient
for the existence of such a PDC controller. Taken together, these conditions form an LMI
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teasibility problem. If a feasible solution to this problem can be found, then a set of stabilizing
gain matrices can be computed directly from the solution.

Lemma 1. The fuzzy control system of T-S model (1) is stabilizable in the large via PDC
control (2) if there exist a Q > 0 and M;, 1 =1,2,...,r such that the following LMI conditions
hold:

LA}, Q)+ B;M; + M'Bl <0, i=1,...,r (3)

L(A; +A;,Q)+ BiM; + M'B + B;M; + MIB] <0, i<j<r (4)
And the PDC' controller 1s given by :

K; = M;Q 1. (5)
The Lyapunov function is given by :
V=2zx'Q ' (6)

In [20], a relaxed version of this result is given by adding a slack variable Y. Later this paper,
we will give a more relaxed version of the LMI conditions for the stabilization of T-S model via
PDC control.

The above concept of PDC control can also be applied to design fuzzy observer for T-S
modell?1:22, The fuzzy observer is in the following form:

Rule ¢: IF p]_(t) 1S M{,l .-+ and pz(t) 1S M’H,:

2(t)=A;2(t) + Bou(t) + Li(y(t) — #(1)),

THEN :
y(t)=Cix(t),

where 1 =1, 2, ---, 7.
The output of the fuzzy observer is determined by the summation

2(t) = )_hida(t) + 3 _Bihiu(t) + 3 _hiLi(y(t) — 9(2)), (7a)

.Ir‘i

g =) hCi&(t). (7h)

z=1

It has been shown that the above fuzzy observer can also be designed via the approach of PDC.
The following result!21:22! states the LMI conditions which are sufficient for the existence of
fuzzy observer such that the steady error between x(t) and &(t) converges to zero.

Lemma 2. The fuzzy control system of T-S model (1) is observable in the large via fuzzy
observer (7) if there ezist a Q > 0 and N;, i = 1,2,...,r such that the following LMI conditions
hold :

E(Ai,QA)—NiCi—CENE<O, 1=1,...,7 (8)

.C(Al-l—AJ,Qh)—“NECJ—C;NE“NJCE—CENE < (), 1 < J KT (9)

And the fuzzy observer is given by :

Li=Q'N; (10)

In [21,22], a controller structure combining both the state feedback PDC controller and the
above fuzzy observer is adopted to handle the problem of output feedback problem. It has been
proved that, when parameters p;(t) are completely measurable, a separation principle also holds
true. Therefore, as in the controller design for linear systems, we can design the fuzzy regulator
and fuzzy observer separately and then combine them together as an overall controller for 1'-S

model.
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In this paper, we will take a different approach to tackle the problem of output feedback
controller design for T-S problem. A special controller structure called dynamic parallel dis-
tributed compensator (DPDC) will be introduced. Compared to the previous results, there is
no distinct regulator and observer part in the DPDC controller. Instead, the controller de-

sign problem is formulated into a single LMI problem. By doing that, performance-oriented
controller design can also be incorporated into this framework.

3 Relaxed LMI Condition for State Feedback PDC Controller Design

In this section, we will present a relaxed version of the LMI conditions which are sufficient
for the existence of a quadratically stabilizing state feedback PDC controller. First, we state a
lemma which will be used repeatedly in the results which follow.

Suppose that we are given r functions of p, h1(p), ..., h.(p), which satisfy the conditions
that h;(p) > 0 and that for every p, > ._, hi(p) = 1. Furthermore, suppose that we are given
r“ matrices A;; indexed such that 1 < 4,7 < r. The equation

r T

& =53 hi(p)h;(p)Aia (11)

1=1 =1

}

describes a parameter dependent differential equation with an equilibrium point at & = 0.
Recall that the origin is said to be quadratically stable if and only if there exists a symmetric
matrix P > 0 such that the time derivate of the associated function V(@) = &’ Pz is negative
for all @ # 0. The following lemma gives a sufficient condition for the quadratic stability of
equation (11).

Lemma 3. The nonlinear system described by differential equation (11) is quadratically
stable if there exists a matriz P > 0 and T(T;‘ ) symmetric matrices T;; with 1 <17 < J < r such
that the following two conditions hold :

1) For every pair of indices 1 < i < j < r, the equation

L(A:;; + Aji, P) < T3 (12)
15 satisfied.
2) The matriz
114 11,
T = (13)
Tl*r Trr

1$ negative definite.

Proof. Omitted. ]

Based on this lemma, we have the following result for the state feedback PDC controller
design for T-S model:

Theorem 1. A sufficient condition for the existence of a PDC controller (2) which
quadratically stabilizes the T-S model (1) is that there exists a matriz Q > 0, matrices M;,
1 <1< r, and symmetric matrices f}j, 1 <1< 7 <7 such that the following two conditions

hold :
1) For every pair of indices satisfying 1 < i < j < r, the inequality

L(A; + A}, Q)+ MB + B;M; + M*BY + B;M; < T (14)

1s satisfied.
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2) The matriz

Tll Tlr
T=|: - (15)
Tlr Trr

1s negative definite.
Furthermore, if matrices exist which satisfy these inequalities, then the feedback gains K; =
M; Q' will provide a quadratically stabilizing PDC controller.
Proof. Suppose that the conditions in Theorem 1 are satisfied. If we pre- and post-
multiply both sides of Eq. (14) by Q! the results can be expressed as

L((Ai+BMQ1,Q ) +L((4 +B;MQ™1),Q ) <Q 'T,,Q " (16)

Furthermore, if we pre- and post-multiply T by a block diagonal matrix which has a Q! at
each of its diagonal elements, the second condition can be expressed as

Q' Q! ... Q' Q1]
: ' : < 0. (17)

QT Q7 ... Q7'T.,.Q
If we select the gains K; = M;Q~! and apply the PDC controller (2) to the T-S model (1),
then the resulting closed-loop dynamics are described by the equation

T

&= Y hihj(A;i+BiM;Q ")z, (18)

=1 7=1

By setting A;; = (A;+B;M;Q" '), P=Q 7 ',and T}; = Q_lf}jQ*l, it 1s apparent from Lemma
3 that Eq. (16) and (17) imply that this closed-loop system is quadratically stable. This proves

the existence of a solution.

Remark. The above theorem is a generalization of the results given in [15,22|. It also
generalizes the LMI condition given by [24] in which case Tz-j is restricted to be of the form
ft-jI . The above theorem can also be further relaxed if the structure of the fuzzy membership
function 1s known. For example,

1) Sometimes there is no overlap between two rules, i.e., the product of the h; and the
h; may be identically zero. In this case, the above theorem can be relaxed by dropping the
condition (14) corresponding to the ¢ and 7 in (14).

2) If only s < r rules can fire at the same time, then the conditions of this theorem can
be further relaxed to only require that all the diagonal s x s principle submatrices of T are

negative definite.

4 Stabilizing Controller Design of DPDC
For many systems, it is not possible to obtain a measurement of the entire state vector.

If only the output measurements are available, dynamic elements must often be incorporated
within the controller. Therefore, to tackle the problem of output feedback controller design for
T-S models, we need to introduce a rule-based dynamic compensator structure which we will
refer to as dynamic parallel distributed compensation (DPDC). The DPDC structure consists

of a double index set of fuzzy rules:
Dynamzc Part :

Rule 75: IF p1(t) is M;; and p;(t) is M;; and
... and pg(t) 1S Mﬂ and p;(t) 1S Mjg,
THEN x(t) = AYx(t) + Bly(t).
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Output Part :
Rule i7: IF p1(t) is M;; and py(t) is M;; and
... and p(t) is My and pi(t) is M,
THEN wu(t) = Clx(t) + D.y(t).
Note that if the T-S model of the plant contains r rules then the DPDC rule base contains
r? rules and that each rule uses the same feedthrough matrix D.. It is possible to relax this

restriction, but doing so necessitates the use of a triple indexed rule base, and the complexity
increases greatly. The truth value for the ijth rule is the product

W; (p(t)) = Hi=1nf;=1Mik (Px (t))qu(pq (t)):

and the firing probability for the i7th rule is defined by the equation

w;(p(t))w;(p(t))
hij = h; h.?' - °
(p(t)) (p(t))h;(p(t)) (Z:-_-l w; (p(t)))

T T
For every value of p, these firing probabilities satisfy the identity Z Z hi,(p) = 1.

7
The dynamics described by the DPDC compensator evolve according to the system of equations

£ =Y > hi(p)h;(p)(A¥z + Bly), (19a)

r=1 =1

u=9Y_ Y hip)(Ciz+ D.y). (19b)

i=1 j=1

Next, we are going to derive a set of sufficient LMI conditions for the existence of a quadratically
stabilizing DPDC. In order to derive the LMI design conditions, it is useful to begin with the
closed-loop system for the T-S model with DPDC controller. It can be written as:

i‘cl — zzhi(p)h'j (p)Ai{mcla (20)

=1 7=1

where -
qii - | Ai t BiDCy BiC;
¢ B.C; A7 ]
Based on Lemma 3, we know that the closed-loop system will be stable if the following two
conditions hold:

1) ﬁ(AS - AS:P) < Ti:i: (21)
T11 Tlr

2) T=1: .. = [|<O. (22)
Tye ... To

However, Eq. (21) is not an LMI condition by itself since the DPDC controller parameters
and the Lyapunov function parameters interweave with each other. So we have to find a linear

matrix transformation to convert Eq. (21) into LMIs. To do that, we will first partition the
constant matrices P and P~! into components:

Py P12] ~1 [Qll le-
P = and P = .
[PI'IL" Pao 2 Q22
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We will also define the matrices II; = Q}[‘l [ and II, = PlI; = ! PTH :
12 0 0 P

Eq. (21) will hold if and only if IT(£(AY + A%, P)II; < IITT;;11;,.

cl?
This equation can also be rewritten as
I (AY + AL + 10} (AY + AZ)HTII, < T 75,00, . (23)

We can define the term HEAi{Hl on the left hand side of the above inequality as E;;. Writing
. |1 0 ][A;+B;D.C; BC!||Qu I
out this term, we have E;; = [Pu Pw] [ BiC, Al l - T o]

Matrix E;; can also be rewritten as

5= |Bien) Bom) 2
where
E;;(1,1) 2 (Ai+ B;D.C;)Qu + B;C!Q15,
E;i(1,2) S A+ B;D.Cj,
E;;(2,1) = Pi11(A; + BiD.C;)Q11 + P12B:C;Qq1 + P11 B:CIQ1, + P12 AY Q1
E;;(2,2) 2 Pu(A;i+ BiD.C;)+ P12B:C;.

And if we define

A ; = Py, (A; + B;D.C;)Q11 + P12BiC;Qu1 + P11 BiC1Q1, + P12 AY Q1 (25)
B; £ Py B;D. + P13 B, (26)
C; = D.CiQu1 + CiQT, (27)
D2 D.. (28)

The matrix £;; then becomes

g - |AQu+Bi€; Ai+ BDC;
. Aij P A;+B:Cj |’

and the closed-loop stability condition Eq. (23) can be expressed as:

L(Ei; + E;;, I) < II] Ty;1;.

F

If we further define 7;; = II,T;;II; and notice that the negative definiteness of matrix T =

T11 c e Tlr,r- Tll SR Tl'r
: .. 1 | is equivalent to the negative definiteness of matrix T' = | . AT
Tl-r c v e TT‘T T]_'r R Trr

we arrive at the next theorem:

Theorem 2. A sufficient condition for the eristence of an s-dimensional DPDC con-
troller (19) which quadratically stabilizes the T-S model (1) is that there exist two mairices
Q.1 > 0 and P;; > 0, matrices A;;, Bi, C;, D, 1 < ¢ < r, and symmetric matrices Ti;
1 <1< j < r such that the following three conditions hold:

1) The matric
I Py
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is positive definite.
2) For every pair of indices satisfying 1 <1 < j < 7, the equation

L(Eij + Eji, I) < (31)

18 satisfied where

A;Qu + BiC; A+ B;/DC;

Bij = A-gj P11 A; +B;C; '
3) The matrix ﬁ ﬁ
Ty ... Ty,
Tl'r Trr

1s negative definite.
Furthermore, if matrices exist which satisfy these inequalities, then the gains

AY = PRYAij — Pi2BiC;Q1 — PiuBiCiQ1, ~ Pii(A; + BiD.C;j)Q11)Q12
B: = PLY(B; - P;1B;D,.),

C: = (Ci—DcCiQu)Qry »

D, = D.

will generate a measurement feedback DPDC controller which quadratically stabilizes the plant.
P12 and Q12 are chosen so that the constraint Py1Qq11 + Pleirz = I s satisfied.

In the above theorem, Eq. (30) is equivalent to the requirement that P > 0. This
equivalence has been proven in [27]. The constraint P1;Q11 + P12Q1, = I comes from the fact
that PP~! = 1.

A further step can be taken to reduce the number of LMI variable in the above result. It
1s noted that the controller can be simplified as:

&= Y hi(p)h;(p)(A¥z + Bly), (33)

i=14=1
u=> Y hi(p)(Ciz + D.y).
i=1j=1
where .
"Ziij — E(Aij + Agi)r BE: = B:;:' C_':E — Ci! D. = D.. (34)

Since AY = AI', the number of controller parameters can be reduced nearly by half by only
defining the case for 2 < 3. So if we define variable

_ 1

Aij 2 2 (Asj + Aja), (35)
_1: % Bi: (36)
_1'. g Ci*) (37)
D = D. (38)

L

It can be shown that A;;, B;, C;, D will depend only on A%, B:, C?, D.. And the matrix Eii+Ej;
can be written as:

E;; (39)

(40)
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where
E;;(1,1) = AiQu1 + A;Qu + BiC; + B;C;,
Eij (1, 2) = A, + Aj <+ B,‘,'DCj - Bj'DCf_,
Eij (2, 1) — zjij,
E—’Ij (2, 2) = Pi1A; + PllAj -+ B_T;Cj - B"_,,*Ci.

Therefore, we get the following corollary:

Corollary. A sufficient condition for the existence of an s-dimensional DPDC controller
(34) which quadratically stabilizes the T-S model (1) is that there exist two matrices Q11 > O

and Py; > 0, matrices A;;, B;, C;, D, 1 <1 < r, and symmetric matrices T1 ,1<1<3<r
such that the following three condztzons hold :
1) The matriz
Qu 1
{ P (41)
18 positive definite.
2) For every pair of indices satisfying 1 <1 < j < r, the equation
L(Ei;,I) < Ty (42)

15 satisfied where

[ A;Q1y + Alel__-l- B{,C—j -+ Bjéi A+ A; + Biﬁci + Bj'D__Oi (43)
Y i 2-'4113‘ PllAi -4 P“Aj ~+ BiCj + BjC'I-
3) The matriz ﬁ )
Tll Tlr
T=] - (44)
Tl'r T‘rr
15 negative definite.
Furthermore, if matrices exist which satisfy these inequalities, then the gains
117 1 1 1 37 ~C
A7 :§P121(2Aij — P12 B.C;Q11 — P1aBLCi@Q1 — P11 B C
P11 B;C{Q1, — Pii(Ai + BiD.C;)Qu1 — Pu(4; + B; D.Ci)@Q11)Q17 (45)
B =P,'(B; — P, B;D,), (46)
C: =(C; — D.C;Q11)Q715 (47)
D. =D (48)

wll generate a measurement feedback DPDC controller which quadratically stabilizes the plant.
Pio and )1o are chosen so that the constraint P11Q41 + P12Q1F2 = [ 15 satisfied.

5 Performance-Oriented Controller Design of DPDC

The section presents the solution to the problem of DPDC controller design which meets
a variety of useful performance criteria. These performance criteria is often needed in many
systems for requirements such as disturbance attenuation, input constraint and so on. As in the
previous sections, LMI conditions will be derived that are sufficient for the existence of a satis-
factory DPDC controller. Due to limit of space, the performance specifications presented will
only include generalized H, performance and input constraint. Results for other performance
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criteria can be derived following similar procedure. For each of the performance specification
included here, we will first present a set of parameter dependent inequalities conditions that can
guarantee the satisfaction of the performance specification. Then, we will restrict our consid-
eration to the DPDC controller structure. This restriction allows us to convert the parameter
dependent mmequalities, which used to be difficult to solve, into LMIs.

In the subsection, we will consider the T-S models which can be represented by a set of
fuzzy rules in the following form:

Dynamic Part :

Rule 2:  IF py(t) 1s M;; --- and pi(t) 1s M,

THEN x(t) = A;x(t) + B;u(t) + B} w(t).
QOutput Part :
Rule z: IF pl(t) 1S Mﬂ .-+ and pz(t) 1S Mi[,

THEN y(t) = C;z(t) + D!, w(t).

and 2(t) = C'z + D'u + D!  w.
where p;(t) are some fuzzy variables, ®(t) are the system states, u(t) are the control inputs, w(t)
are exogenous inputs such as disturbance signals, noises or reference signals, y(t) represent the
measurements and z(t) stand for performance variables of the control systems. We can simplify
the expressions of the T-S model as:

& =Y hi(p)(Aiz + Biu + BLw), (49a)
1=1

z= )Y hi(p)(Ciw+ Diu+ Di, w), (49b)
1—=1

y =Y hi(p)(Ciz + Diw). (49¢)
1=1

The closed-loop system equations for a T-S model (49) with DPDC controller (19) have the
form:

£ =Y ¥ hi(P)h;i(p)(Adx. + Biw), (50)
i=13=1

Za = Y Y hi(p)hi(p)(CHza + Diw), (51)
1=17=1

where . . .
A — A; + Bi.Dch Btcg B - B + BIDCD&,
cl BicC, Al ) el B.Dj, |
Ca=I[(C;+D;D.C; DCi|, Dj=|[D:,+DiD.Di].
Now we are ready to derive LMI conditions that can be used to design DPDC controllers which
satisfy a variety of useful performance criteria.

Generalized H, Performance
Definition 11281, A causal NLTI G:

d’ci — Aci(p)mcl Bcl(p)w: (523‘)
z = Cﬂf(p)mch (52b)
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is said to have generalized Hy performance less or equal to ¢ if and only if
lz(T) < ¢, VT 20, (53)

where ©,(0) = 0 and f(;r |w(t)|]?dt < 1.
Define the function V(e (t)) = =, Px., where P > 0. Suppose

L(Aqa(p), P) PB.,(p)
( B (p)P ~(I ) <0 o

Then £V (zu(t)) < (w'(t)w(t). We will suppose D.i(p) = 0. In this case, if the equation

P CIp)
(cd(p) I )>° (55)

is satisfied, then 2'(t) z(t) < (V(x(t)). This leads to the following lemma:

Lemma 4. For system G that can be described by Eq. (52) the generalized H o perfor-
mance will be less than ( if there exists a matriz P = PT > 0 such that (54) and (55) are
feasible.

To convert the inequality (54) and (55) into LMIs, We begin by applying a matrix con-
II, O
0 I
(50) and (51). By utilizing the notation in (35)~ (38) and following similar procedure as in the
previous section, we get the following result:

Theorem 3. For a T-S model (49) with DPDC controller (34), the generalized Hy per-
formance will be less than ( if the following LMIs are feasible with LMI variables Q11, P11, 13j,

S.;j, Aij, B{_ C.,; and D fG‘?" all ¢ SJ,

gruence transform on them using the matrix ( ), where the system G 1s defined as in

U'i:f(la]-) U‘a‘:j(112) Ui:f(lﬁ'?’)
1) ( (Ui;(1,2)0 Uii(2,2) Ui;(2, 3)) < Ty, (56)
(Ui;(1,3)T  (Ui5(2,3))"  Uiy(3,3)
where
U;;(1,1) =C(A;, Q) + L(4;,Q11) + BiC; + (B:C;)T + B;Ci + (B;Ci) T,
Uij(l, 2) =A; + Aj -+ Biijj -+ Bjﬁci -+ 2.,&;‘1-?‘_’
U;;(1,3) ———Bfu + B,fﬂ +- B.ﬂ-)D.ﬂ, + BjﬁDiu,
Uij(2,2) =E(A;-I‘,P11) + ﬂ(AJT,Pll) + BiCj + Bjci -1- (B,ECJ-)T + (B_jCi)T,
Ui;(2,3) =Py, B, + P, B! + B;D’ + B; D%,
U-i.j(393) = — 2¢1,
Ty1 ... Tir
2) T=): . 1 |<0 (57)
T, ... Ty
Vi;(1,1)  V3(1,2) 0 Vi5(1,3)
3) ((Vi:i(laz))T Vij(z: 2) Vij(z:'?’)) > S'i.fﬂ (58)
(Vi3 (1,3)T (Vi;(2,3))" Vi;(3,3)
where

‘/13(1: 1) :2Q111 ‘/tl.j(]-&2) — 21:
Vi«j(113) :Qll(ci T Ci)T + (D;c—:: + Dic-i)Ta Vi:i (212) = 2P,
Vii(2,3) =(C: + Ci + DLDC; + DIDC;)", Vi;(3,3) = 2(1,
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511 R Sl*r
Sl-r S'r'r
together with the constraint
D + D! +D'DD! +D'DD: =0, Vi< j. (59)

The controller is given by (45)~(48), where Pi5 and Q12 are chosen so that the constraint
P11Gq11 + Ple;rz = | 15 satisfied.

Constraints on Control Input

Definition 2137, A causal NLTIG : & = Ag(p)xs and u = K(p)z, with a specified

initial condition . (0) satisfies an exponential constraint on the input if
lu(T)|| < ¢e™*", VT >0. (60)
Define the function V(z) = !, Pz, where P = PT > 0. Suppose that the equation
L(Aq,P)+2aP <0 (61)

holds. In this case, the inequality V(z.(t)) < e %'V (a(0)) will be satisfied. Furthermore, if

the equations
P P.’Bcg(O) )
>0 62

(wL;(O)P (I (62)

and

P K(p)t'
(K(p) ¢I )<O (63)

hold, then the inequality
u(thu(t) < (&, (t)Pza(t)) < Ce 22t(z,(0)Pzy(0)) < (2e—20

will also be satisfied. Combining these results, we have the following lemma.:

Lemma 5. For system G : & = Aq(p)xg and uw = K(p)x , the exponential constraint
|lu(T)|| < e T, VT > 0 will be satisfied if there ezists a matriz P = PT > 0 such that
inequalities (61), (62) and (63) are satisfied.

Similar to the derivation for the previous theorem, we will apply a linear matrix transfor-
mation to convert the above inequalities into LMIs. For(61), we will apply II, defined previously

II; O .
0 I) will be used as

the congruence transformation matrix. Again, after we utilize the notation in (35)~ (38) and
follow similar procedure as in the previous section, we will get the following result:

Theorem 4. Consider a T-S model (1) with PDC controller (34). Suppose the initial
state is given by [®(0) x.(0)], then ||u(t)]| < (e=** for all t > 0 if the LMI conditions the
following LMI conditions are feasible with LMI variables Q11, P11, P12, T;;, .ii.,;j, B;, C; and D.

U‘i.?(la 1) Uij(1:2) . _
g ((Uij(l,z))T Ui (2, 2)) < T, Vi<y, (64)

for the congruence transformation. For (62) and (63), the matrix (

where
U:;(1,1) =L(Ai, Q11) + L(A;,Q11) + BiC; + (B:C;)T + B;C; + (B;C;)™ + 2aQq1,
U.,;j(l,Z) =A; + Aj + Btf’CJ + Bj‘DC._;, +.2¢&%‘- + 2ad,
U;(2,2) =L(A;, Pi1) + L(A;, Pi1) + B:C; + B;Ci + (B:C;j)" + (B;C:)* + 2aPyy,
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Tiv ... Ti.
2) r=1{( . . . |<0, (65)
Tlr T'r
Q11 1 (0)
3) I Py PH:B(O) -+ Plziﬂc(O) > 0, (66)
z'(0) 2'(0)Pi1 + = (0)P; (1
Qun 1 Cl
4) I Pqq (TDCE)T > 0. (67)
c. DC;, (I

The controller is given by (45)~ (48), where Q12 is chosen such that the constraint P;;Q1;+
PmC,fiF2 = [ 15 satisfied.

6 Example

In this section, a ball and beam system is considered which is commonly used as an
illustrative application of various control schemes!??!. The system is shown in Fig.1. The beam
i1s made to rotate in a vertical plane by applying a torque at the center of rotation and the
ball is free to roll along the beam. We assume no slipping between the ball and the beam. Let
x = (r,7,0, 9) be the state of the system and y = r be the system output. The system can be
expressed by the state-space model:

z = f(x) + g(x)u (68)
L 0
5 .
where f(x) = Blz12; ;:; sinz3) , gle) = 8
0 1

Fig.1 The ball and beam system

We begin by representing this system using a T-S model via sectorization. There are
two nonlinearities in (68), the z,x2 term and the sinz; term. We will sector bound these

z Tr] and z,,x4 € [—d d].

nonlinearities on the operating region. In this example, assume z3 € |

2 2
This is the region that the system will operate within. It follows that f(x) can be written as :
f(®) = M1 Myvy + My Maz(vr + v3) + Mi1 Maz(vi — v3) + Mo Mz v9 +
M11 Moy (ve + v3) + MiaMas(ve — vs),
where
. sin(x3)
M12($B3) = 1523 , M11($3) =1- M11($3)1
1 - 2
it
1 124 = d O r1z4 2 0
T1Z4 L1d4
M22($1$4) - ¥, 0< T1T4 < d y M23($11L'4) = —d —d < T1T4 < 0 ;
0 r1xy < 0, 1 r1Ty < —d
My (z124) = 1 — Maog(z124) — Mas(z124),
and vy,v9, and v are defined by
2BG
vy = (2, — BGz3, 74, 0)', vy = (2, z3, €4, 0)T, vy = (0, Bdzs, 0, 0)".

(i3
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The T-S model follows directly as follows:
Rule 75: IF |z3| is My; and z1x4 1s Myj,

THEN x(t) = Aijd:(t) -+ Biju(t),

where 1 = 1,2, 7 = 1,2,3.

For example,

01 0 0O 0
0 0 —BG O 0
A““‘oo 0 1’3”‘“0
00 O O 1

An output feedback DPDC controller was designed for this system. LMI design conditions are
solved via Matlab LMI Toolbox!?4!. The simulation results are shown in Fig.2. The system
parameters for simulation were chosen as B = 0.7143, G = 9.81, d = 5 and the initial condition
was [1,0,0.0564, 0].

3 2.5 . - ]
2.5 ) IR R R R R R TR R
2 15 - bee it s ]
q L.D . [ PR I P ..
1 05
0.5 OH4 - - -2 v et
0 - .__0‘5 ............... . ..................
_ _1 ' F
00 0 5 10 15 20
Time Time
4
0.8 01 - oo ceae e 3h. o e e s
o6y 0 - o aere aeed e a9l ... e
04} 4 - - - v e e e 1
&0
8 0_2 .............................. § 0
0 B T 8 I T S
_0_2 .............. ___2
— S-S : -3 . . .
0'40 5 10 15 20 0 5 10 15 20

Time Time

Fig.2 Response of Ball and Beam using DPDC with linear parameterization

7 Conclusion

This paper presents the LMI-based controller design for the T-S fuzzy models. The control
laws are in the form of the so-called parallel distributed compensation (PDC) controller which is
essentially a nonlinear controller. Both the state feedback and the dynamic feedback controller
are considered. The controller parameters are obtained trom the feasible solution of a set of
sufficient LMI conditions.

If variables p comes from the output of the system, the dynamic feedback controller will
become output feedback controller which is necessary if only part of the system states are
avallable. However, if full system states are available, it is noted from the LMI conditions that
the output feedback controller offers no advantage over the state feedback controller.

The framework used in this paper can be applied to the nonlinear uncertainty control. The
basic tool for robustness analysis of such uncertainty system is the small gain theorem which
can be related to the Ly gain . Thus by making the gain of nominal plant small enough, we



4 R WANG Hua O. et al. : Parallel Distributed Compensation for Takagi-Sugeno Fuzzy Models 475

can guarantee the robust stability. The results in this paper are also applicable to hybrid and
switching systems. Details will be presented in the sequels of this paper.
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