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Abstract In this paper, we consider repeatable tracking control tasks using a new
control approach - PD type Fuzzy Logic Learning Control (FLLC). FLLC integrates two
main control strategies: Fuzzy Logic Control as the basic control part and Learning Con-
trol as the refinement part. The new FLLC is constructed by simply adding an iterative
learning mechanism to a fuzzy PD controller. The incorporation of the learning function
into fuzzy PD controllers ensures exact tracking because it completely nullifies the ef-
fects of reference signal and periodic disturbances on the tracking error. Through rigorous
proof based on energy function and functional analysis, we show that the proposed FLLC
system achieves the following novel properties: (1) the tracking error sequence converges
uniformly to zero; (2) learning control sequence converges to the desired control profile
almost everywhere. Simulation is presented to show the validity of the proposed control

method.
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1 Introduction

Fuzzy Logic Control (FLC) was originally advocated by Zadeh!!! and Mamdani'? as a
means of collecting human knowledge and experience to deal with uncertainties in the control
process. In recent years, Fuzzy Logic Controllers have been widely used for industrial processes
owing to their heuristic nature associated with simplicity and effectiveness especially for non-
linear uncertain systems. When a control task is given, a FLC is customized suitable for the
task by experienced experts or stilled operators who “learn” to develop the FLC wherever the
control task repeats.

The effectiveness of a FL.C is mainly because of its structured nonlinearity. Many FLCs
are essentially the fuzzy PD, fuzzy PI or fuzzy PID type controllers associated with nonlinear
gains!3~6 Because of the nonlinear property of control gains, this kind of FLCs possesses the
potential to improve and achieve better system performance. For instance, the farther the
system error or change of error is off the equilibrium point, the higher the control gain is. Thus
the closed-loop system will respond faster to the set-point change and recover faster from the
load disturbance comparing to the conventional PID control.

(Generally speaking, the nonlinear structure properties of a heuristically designed FLC cater
well to the characteristics of the industrial process under control. However when a new control
task is given, it is always imperative to re-adjust the FLC so as to produce reasonable responses.
It will naturally take experienced experts or skilled operators long time and great efforts to re-
adjust the FLC suitable for the new task through trial and error. A simple and feasible idea
1s to retain the well established FLC nonlinear structure and only tune the FLC parameters
such as the input-output scaling coefficients. FLC auto-tuning methods!®:") have been proposed
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which work effectively and can satisfy the specified gain margin and phase margin. The main
limitation of FLC auto-tuning is that the auto-tuning schemes are only applicable to simple
control tasks such as set-point control or step type load disturbance rejection. It would be a
challenging work for a FLC to perform complicated tracking control tasks.

One way to partially address the trajectory tracking problem is to offer the FLC system a
learning mechanism. Instead of letting experts learn to adjust, it is better to let FLC incorporate
adaptive or learning functions to adjust itself to best meet the control task, which would be
much more efficient and more accurate. Applying neural network into the FLC[®~11] is one such
possible method. However, a neural controller tends to be over complicated due to its large
number of nodes and weights. On the other hand, an over simplified neural network may not
achieve sufficient tracking precision. As a kind of input-to-output mapping approaches, most
neural controllers will reconstruct the whole control system, which is neither practical from
control engineering point of view, nor advisable from both FLC point of view where the “good”
nonlinear structure is to be retained.

In this paper we propose a new modular approach - Fuzzy Logic Learning Control (FLLC),
which integrates two complement control methods, FL.C and Iterative Learning Control (ILC),
and improves the tracking performance through tasks repetitions.

In the configuration, FLLC consists of two control modules in an additive form: a simple
fuzzy logic controller, and a learning mechanism which update the current control profile from
the previous control sequence. Such a construction does not alter the existing FLC which
is heuristic and proved effective from expert’s experience. From the control point of view,
FLC provides feedback and the learning mechanism realizes feedforward compensation. The
necessity of incorporating learning function into FLC can be justified in terms of “internal
model principle”. The “internal model” of both reference signal and disturbance has to be
incorporated into the feedforward loop because the feedback loop will not be able to provide
the necessary control action when the tracking error approaches zero. In other words, when a
FLC system is at the equilibrium point, the tracking error is zero and the control feedback part
is also zero. However, to track a target trajectory and reject a persistent disturbance, a non-zero
control profile will be demanded over the tracking period. Now if the control environment is
repeatable or more or less repeatable over a finite duration, the proposed FLLC can provide a
simple and effective way to possess such an internal model.

In this paper we limit our discussion to a simple PD type FLC. The proposed FLLC
method based on the Fuzzy PD focuses on learning for the repeatable control tasks. The
nonrepeatable factors such as random disturbance are assumed to be very small, consequently
negligible. Through rigorous proof based on energy function, we show that FLLC system
achieves the following novel properties: 1) the tracking error sequence converges uniformly to
zero; 2) learning control sequence converges to the desired control profile almost everywhere.

The paper is organized as follows. In Section 2, problem formulation and control objective
are introduced. In Section 3, the structure and properties of a PD type FLC are derived. In
Section 4, FLLC with learning input updating is introduced with rigorous convergence analysis.
In Section 5, simulation work is presented to demonstrate the effectiveness of the proposed
scheme.

2 Problem Formulation
In this paper, we consider the second order nonlinear dynamical system described by

T1 = T2, (1)
Lo = f(ib, t) + b(mla t)u: J
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where z1(t) = y(t), ¢ = [zy,z3] C R? is the physically measurable state vector, and u is the
control input. f(a,t) and b(z,,t) are nonlinear uncertain functions.

For this system we make the following assumptions:

Al) f(=,t) is bounded by a known function fp.x(@,t), and 0 < bmin < b(x1,t) < bmax
where b,.;, and b,.x are known constants.

A2) Vh € {f,b}, h(z,t) € C(R? x [0,T%]) and h(wx,t) satisfies the Lipschitz condition,
\h(zy,t) — h(za,t)|| < Lullzy — ®2]|, VE € [0,T%], Va;,22 C R? and for some positive constant
L;, < oo.

Given a finite initial state @;(0) and a finite time interval [0,T] where ¢ denotes the
iteration sequence, the control objective is to design a FLC combined with iterative learning
such that, as ¢ — oo, the system state ®; of the nonlinear uncertain system (1) tracks the
desired trajectory &4 = [z4.1,Z42] € R? which is generated by the following dynamics over

[03 Tf]
i’d,l - "Bd,21 (2)
:i:d,fz — ,B(a:d,t) -+ T(t),

¢where B(xq4,t) is a known function and r(t) is a reference input. As part of the repeatability
condition, the initial states x;(0) = a4(0) is available for all trials.

3 Properties of a Fuzzy PD Controller

For a large class of FL.Cs, fuzzy input variables are the error e and the change of error e. The
fuzzy rule table is then established on the phase plane (e, é). In essence, these fuzzy controllers
are the fuzzy PD type, fuzzy Pl type or fuzzy PID type associated with nonlinear gains. Because
of the nonlinear property of control gains, FL.Cs possess the potential to improve and achieve
better system performance. Due to the existence of nonlinearity, it is usually difficult to conduct
theoretical analysis and find out appropriate design methods.

Consider a typical class of fuzzy PD controllers!!2] and the control system is shown in Fig.1
The inputs of the fuzzy rule base are the normalized error (w.e) and the normalized change

of error (w:€) where w, and we are weighting factors. The error and the change of error are
defined as

e(t) = yref(t) = y(t)a

0 = 55 - T

Yref Fuzzy Y
e e
We

Fig.1 Overall structure of the FLC closed-loop system

The membership functions used to fuzzify the inputs are triangular in shape shown in Fig.2 and,
consequently, there are four simple fuzzy control rules (Table 1) used in the FLC. The reasons
to choose this type of FLC are 1) theoretical analysis is possible owing to the known structural
knowledge; 2) the nonlinearity of the simplest fuzzy PD controller is the strongest in the case of
linear distributed rules(13! : 3) it is highly desirable to make the FLCs as simple as possible and

leave the performance refining task to learning control, i.e., maximize the automated learning
and minimize the heuristic learning efforts in deriving FLC rules.
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The fuzzy output variables have trapezoidal shape membership functions and the lengths
of their upper and lower bases are 24 and 2H (Fig.2), respectively. Zadeh’s AND (MIN)
and Lukasiewicz’s OR are used in the fuzzy inference and the most general inference method,
the Mamdamni’s minimum inference method!®, is considered in the discussion. By using the
center of gravity (COG) defuzzification method, Ying!'? has discussed the control property

when A < 0.5H, and the overall control output can be obtained (inside the unsaturated region
of the universe of discourse)

A
r 3
error nega,tive error. pOSitiVG Qutgut Zero
rate negative 1 rate positive  gutput negative | 1.0 output positive

Fig.2 The membership functions of inputs (w.e,w:€) and outputs

us =k(e, é)(wee + weé), (3)
k(e,e) ={0.5Hw,[(1+ 6)+ 0.5(1 — 0)|wee — weé|| }\
{(3+6) — [(1 + ) max(w[e|,w:[é]) + 0.5(1 — 8)((wee)* + (wee)*)]},

where @ = Iéf and k(e, ¢) is the nonlinear part of the FLC output.
Table 1 Fuzzy control rules. N: Negative; P: Positive; Z:Zero
Rule 1 If error is N and change of error is N, control action is N
Rule 2 | If error is N and chan-ge ;;' errc;r is P, control action is Z
Rule; | Jif er;—ur i;-P a_r:d c;ang:of:rmr is N, control action is Z )
-Rule 4 N If error 1s l: ar;i_ ch;nge:f e;ror is P, control action is P

Let H=1,60 =0.5 and we = wg = w, = 1, the control surface of the FLC and the surface
of k(e, é) of the unsaturated region are shown in Fig.3.

1+ “’

= .0 .““"’:““‘ e

sl SIS

1] @ '
0 "‘ ~ 0.5

delta «e» —0.5 1 1 Y oe

Fig.3 Control surface u (left) and nonlinear control gain k (right) produced by FLC (Unsaturated region)

In fact, from physical meanings, FLCs like this kind are most frequently used. In most
cases, we find that the two-dimensional rule table has the skew-symmetry propertyl}4. The
unsaturated phase plane is divided into two semi-planes by means of a switching line. Within
the semi-planes positive and negative control outputs are produced respectively. While outside
the unsaturated region, the output of FLCs will be partially or fully saturated. In general we
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can choose w, and we or use some simple design methods to ensure that the FL.C works in the
unsaturated region. Based on this, ILC technique is applied to improve the system performance.
From (3), the FLC can be expressed as the following control law

us = k(e,é)o,

where 0 = wee + weé, 0 < kpin < k(e, €) < kmax and u¢ is bounded.

4 Fuzzy Logic Learning Control
The proposed FLLC is given below

U; =Ur + sat(ui__l), (4)
uy,; =ki(e;, €;)o;, (5)
T; =We€; + We€;, (6)

U; -1 ui'.—-l\ *~<-; Upr,

sat(u;_1) = {

up - sign(u;_q)  |u;—q| > up.

. : . . _ A ,
where 1 denotes the iteration sequence, u; is the system input, ug = 0 and 0 < kyn < k(e;, ;) <
Kmax. The saturation bound u s is sufficiently large such that up 2 sup;eio 7)) lug(t)| to ensure
the learnability. ups is either a physical process limitation or a virtual saturation bound which

can be arbitrarily large but finite. Moreover, the original FLC based on heuristic knowledge
should ensure the system stability.

Remark 1. In the proposed FLLC, learning part is an “add-on” function to the existing
FLC. In order to retain any advantages of the existing FLC, we only introduce the simplest

learning mechanism that is the memory-based. Thus the system stability and the learning
convergent rate will depend on the gain property of FLC.

To evaluate the learning performance, the following time-weighted £5 norm of u; — u4 is
used

t
Ji(t) = / e [u; (1) — ug(7)]?dT. (7)
0
The difference of J;(t) between two successive trials for ¢ > 2 can be derived as

AJ;(t) =Ji(t) — Ji1(t) =

t t
/ e (u; — 'u,d)2d7' — / e“”(ui_l - ud):’df <
0 0
t t
/ e M (u; — ug)?dr — / e (sat(u;—1) — ug)?dr = (8)
0 0
t
/ e [u; — sat(ui_1)][u; + sat(u;_q) — 2ugldr =
0
t
/ e"”{uii + 2uyg ;(sat(u;—1) — ug) }dT.
0

First we derive the expressions of sat(u;—1) — uq and u; — ug. From (6) we can obtain

O = We€; + We€; = we(iﬂd,1 - iri.,l) + wé(ﬂld,z — wi,z)- (9)

Differentiating (9) with respect to t yields

0; = wWe(Ta,1 — Ti,1) + we(Ta2 — Tij2). (10)
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Substituting (1) and (2) into (10) gives

O; = we(ﬂld,z — 155,2) + wé(/@(mdat) +- T‘(t)) — h; — lLiu; = gi — hy — Ly

A AN A A
where h; = wéf(fﬂi-,-t), l; = wéb(ﬂ?i,nt), gi = we(md,z = :171',2) + 9d, 9d = Wé/@(mdat) + wé’f‘(t)-

Then
u; = =t + 17 g — 17y (11)

We can derive the desired control, which makes ¢; = 0, consequently o;(t) = ¢;(0) = 0, is

ug =13 g4 — I3 ha, (12)

where hy 2 we f(eg,t), lg = web(zg1,1).

It can be derived that

u; —uqg = — ;165 — v, (13)
sat(ui._l) — Ud =U; —Ufq; —Ud =— —UF; — l;ld'.i — Yi, (14)

where
Vi = (13794 = 171 9:) = (I3 ha — 17 Rs). (15)

Here ~; is the equivalent system uncertainties. We can derive that (See Appendix)

il < efi®a — zill, (16)

where ¢ is a positive constant.

To facilitate FLLC analysis, here we give three propositions which reveal the bound rela-
tionship among the quantities o;, ®;, and ~;.

Proposition 1. For system (1) given the desired trajectory in (2) and fuzzy logic controller
(5), the following stands

g — ; =A (€g — &;) + bas, (17)
t
24 — 2] SWEIHAH/ o4(7) [N dT 4w oy (18)
0
_ 10 1 ], _14T
where A = 0 —wilw, |’ b=(0 w, ]

Proposition 2. For system (1) given the desired trajectory in (2) and fuzzy controller
(5), the following stands

/: e_)"rlo.,;(q-)l Ny (m)ldT < (cw;'I + cwglllAHTfe“A“Tf) /{: EHATJ?(T)dT. (19)

Proposition 3. For system (1) given the desired trajectory in (2), under the control
laws (4) and (5), the following stands

1 1
|2 — @4|| <bmaxe' T J2 (T), (20)

1l 1
o] gbmaX(“’g T wg)%elTJ’T_f JZ(Ty)- (21)

where { 2 max (A, || Al] + bmax¢)-
Proof of all the propositions is shown in appendix.
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Theorem 1. Consider the nonlinear system (1) satisfying assumptions A;, A2 and giving
a desired trajectory @4 defined by (2). Under the control and learning laws (4) and (5), as
1 — 00, U; converges to uy almost everywhere, o; converges uniformly to 0 and x; converges

uniformly to x4.
Proof. Substituting (14) into (8) gives

£
AJi(t) S / E_AT(—U?J- — Zuf’{_l,;lé'i — 2uf,ryi)d'r.
0

Then AJ fO _*)W 2}3,;1;10'1*5'.5“213.50'{}’1:)(17 = — f; ZB_ATkili_lJt(f"idT*f{; QE_ATkT;O'{YidT.
Since b(:nl,t) is bounded l; € [Webmin, Webmax),

{(t)

o i
AJi(t) g "“kmin(wébmax)_lf E_Md(f,? + 2kmax/ 6_’\7-|0'i|"}'£|d7' S
0 g

t t
—-kmin(wébmax)_le“”af — )\kmin(wébmax)_l / e_}‘TJEdT + kaax/ e_’XTIJiH'yi\d'r.
0 0

Using proposition 2, we can derive

t
AJi(t) < — kmin(wébmax) IE_MO'E — /\kmin(w,ébmax)_l f E_ATJEdT-I-
0

'/

L
e max (cwi L + cw || ATyl AITY) / eV o2 ()dr = koo (webmae) ~le~Mo?
0
t
bin (ebimax) ! [ [\~ Zemanki b (¢ + el ATyl 417 e N0 ()
0

Since 2kmakailnbmax(c + c||A||T} e”A”Tf) 1s a finite positive constant, there exists a sufficiently
large A such that A > 2kmaxk_i bmax(c + c||A||T;el 4177 ) 4 k1 (webmax) to ensure

min

t
AJ;(t) € —kmin(Webmax ) te o2 —-—f e o2dr. (22)
0

According to (7), J;(t) > 0, then from (22) we have
0 < Ji(t) < Ji—1(t) € ... < J1(2).
From (22), taking the summation over j = 1 to ¢ obtains

Ji(t) — J1(t) € —kmin(webmax) e Z 0'32'(75)

73=1
As J; 2 0, we have from the above that
i

lim 07(t) € kmin ™ (Webmax )e M 1 (1),
7=1

which concludes that
lim o;(t) =0, Vtel0,Ty].

21— 00
As h_in 0;(t) = 0, from (5) and (19), llm nup; =0 and lim ®; = x4. According to (16),
(’ OO 1—> OO0
lim ~; = 0.
100

From (13) and (7), it can be obtained

L t

— — AT [, . . — ~AT(, h\—2 2 .
il}IiJ(t) 11_1}1'216 i e Mui(T) — ug(7)]%dr = tl_lglﬂ : e T(web;) coidr =
o(t)
lim e“’\T(wébi)_zmdai. (23)
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From (5) we can obtain
O; = We€; + Ws€; = wei:i-,l -+ wéit",g = WeZ; 2 + w.é(f + bui) (24)

As u; is bounded, 4; is bounded. Since e™*7(w¢b;)~25; is bounded and lim o;(t) = 0, we can
11— 00
obtain

lim Ji(t) = 0,

1—> 00
and u; converges to ug almost everywhere.
From Proposition 3 and (25), both x; and o; are bounded. We have

vVt € |0, TY] (25)

lim sup |o;| =0,

lim  sup
100 te|(o, T_f]

|®q — =i = 0,
1—00 tE[U, Tf]

o; and x; are uniformly convergent. From (5) and e;(0) = 0, by solving the differential equation
(1) with the FLLC, we can reach that e; and é; uniformly converge to zero as 1 — oo. ]

5 Ilustration Example
In this section, the FLLC will be applied to a simple non-

linear mass-spring-damper mechanical system!!®] as shown
in Fig.4 . The behavior of this system can be described by

Mi + g(z, &) + f(z) = ¢(2)u, k
g(x,z) = D(cyx + caa + c3®),
f(z) = caz + c52°,

¢ ()

I

( 2 6 ) KT T T T

C
1 + ce + c7z° + cg sin T, Fig.4 Mass-spring-damper system

where M is the mass and u is the force. f(z), g(z,z) and ¢(z) describe the spring, the damper

and the input nonlinearity and uncertainty respectively. The control task is to track the desired
trajectory

rqg = 1.728 x sin®(0.7t) t € [0,9].

Case 1. The system parameters are set to be: M =1.0, D =1.0,¢; =0.01, cg =0.1, c3 =0,
cg = 0.01, cs =0, ¢g = 0.01, c; =0, cg = —0.01. The plant (26) can be rewritten as

i = —0.12 — 0.02z + (1 — 0.01 sin & + 0.01%)u. (27)

Considering the FLC described in Section 3, thus six sets of parameters are chosen without
much elaborations, since there is no systematic way to fine tune the three FLC parameters (w,
We, Wy ). ILC is further added to the FLC to improve the tracking performance. To demonstrate

the effectiveness of the proposed FLLC, the maximum tracking error of each iteration (eyax) 1s
recorded and shown in Table 2.

Table 2 Comparison of FLLC with Different FL.C Parameters

we |wg |wy | FLC Error| emax(t = 1) | emax(t = 2} | emax (: = 3)| emax (t =4)| Iter. Times (emax < 10~3)
5_: o 4 ' 0.1721 0.0413 L 0.0166 | 0.0067 0.0039 17
6 6| 5 0.1101 0.0191 0.0040 0.0018 0.0008 4
7 | 7 | 5 | 0.0923 0.0149 | 0.0028 0.0010 0.0005 4 e
_8 -_8 6 0.0713 0.0076 0.0011 0.0003 0.0002 3 )
4 | 41 6 0.1440 i 0.0313 0.0089 0.0041 0.0017 6
81 8| 4 0.2350 0.0593 0.0261 0.0082 0.0073 19
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We can see that ILC can dramatically reduce the tracking error even if only one iteration is
performed. After a number of learning iterations, the maximum tracking error can be reduced
to less than 0.001 for all six sets of FLC parameters.

Case 2. The system parameters are chosen to be: M = 1.0, D = 1.0, ¢; = 0.02, c2 = 0.1,
cs = 0.15, ¢4 = 0.01, c5 = 0.86, cg = 0.01, ¢c7 = 0, cg = 0.02. The plant (28) can be rewritten as

% = —0.12 — 0.03z — 0.152° — 0.86z> + (1 — 0.02sinz + 0.01z)u.

Applying FLLC with the same parameters as in Case 1, the tracking control results are
summarized in Table 3.

Table 3 Comparison of FLLC with different FLC parameters

We | Ws | W | FLC Error | emax(i = 1) | emax(i = 2) | émax (2 = 3) | emax (2 = 4) | Iter. Times (emax < 1079)
5| 51 4 0.1373 0.0410 0.1379 0.0068 0.0035 10
6! 6 | 5 0.0984 0.0234 0.0062 0.0020 0.0009 4
71 71 5 0.0844 0.0182 0.0044 | 0.0012 0.0006 4
8| 8| 6 0.0647 0.0112 0.0021 0.0004 0.0002 3
41 4| 6 0.1286 0.0349 0.0104 0.0043 0.0020 6
8| 8| 4 0.0863 0.0197 0.0051 0.0015 0.0008 4
The FLLC can work equally well in the presence of stronger nonlinearities.
Case 3. From Table 1 and Table 2 , we can observe that the larger the (w., we, w,), the

smaller the FLC tracking error. However, it is not advisable to reduce the tracking error only
through increasing the FLC gains. Due to the discrete-time control nature, the FLC gains are
limited by the system sampling period. Again consider the plant given in Case 1, but with a
larger sampling period of 10ms.Choosing we = 7, we = 7, w, = 5 and applying FLLC, Fig.5
shows the control signal and the tracking error after six iterations. For comparison purpose,
choosing higher FLC gains w, = 15, w; = 15, w,, = 20 and only applying FLC, Fig.6 shows the
control signal and the tracking error.

105
3 — ] ———————
6! |
2.. _
4
‘E 1r S F P A
5 E 2| n\J | ﬂ
P
3 0 1 = ofi \)
| < MYy |
- 2
S —1f & 2l | | |
U ﬂ d i
4 F
-2+
_._.6—7
0 2 4 6 8 10 0 2 4 6 8 10

Fig.5 Control signal and output error of FLLLC with low gain
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25 l___——"— * 0.01 7~

20 0.008 [ -
151 0.006
= 10T 5 0.0041 ]
5 5| 2
2 = 0.002 -
E g |
é —5} 5 —0.002 -
~10 —0.004 | |
—15¢ —0.006 -
~-20 —0.008 |
~25 - t - —0.01 —. ; .
0 2 4 t 6 8 10 0 2 4 6 8 10
t

Fig.6 Control signal and output error of FLC with high gain

Due to large (w., we, wy ), control chattering phenomenon occurs (Fig.6), yet the tracking
error 1s about 100 times larger than that of FLLC. Obviously, in practice it is difficult for
such a simple FLC to obtain accurate tracking performance. FLLC, on the other hand, can

obtain much better tracking performance and much smoother control profiles with only a few
iterations.

6 Conclusion

In this paper, a novel control scheme - Fuzzy Logic Learning Control (FLLC) is proposed
for repeatable tracking control tasks. The new FLLC is constructed by simply adding an
iterative learning mechanism to FLC without changing the original structure. By rigorous
proof it shows that the FLLC method possesses the capability of improving control performance
through learning iterations. Using FLLC, tracking error uniformly converges to zero, system

states converge to the desired trajectory and learning control profile converges to the desired
one almost everywhere.
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Appendix: Proof of propositions
Proof of Proposition 1. Combining(1) and (2) yields
Td,1 — Til = Td,2 — Ti,2. (28)

Rearranging (10) gives

d’:d,Q — :1-3,:,2 = —w;lwg(md,z — :n.,;*z) -+ wglcir..;. (29)

Combining (28) and (29) gives (17). Integrating both sides of (17) and noticing ;{0) = 0 and @; (0) =
x4(0) obtain

t
L4 — L4 =A/ (a‘:d—mi)df+bm.
0

Taking the norm of the above and since ||bl| = w; !, the following stands

t
2a — ]| < [l f l2d — i ldr + wi o).
O

Applying Bellman-Gronwell Lemma 1'%, we can obtain (18). G
Derivations for the bound of v; From (15) we know

vi = (1794 —1; "g:) — (I3 ha — 1] ' hs).

It can be derived that

il I8 9a — L ga + 1 ga — 17 gs| + {13 ha — 17 ha + 17 ha — 1R <
T e — L] - |ga) + 87 ga — gil + 17 MG L = L] - (ha] + 17 ha — hal.

Since gq — gi = we(Zq,2 — Ti,2), we have |ga — gi| < wellxq — x|
Under assumption Al), b, ! is bounded by b;}n, SO l;‘l and l;l are also bounded by (Wébmin)__l.

Since hg and gq are both bounded, we denote that hy; = SUP;¢(o, T/ ha(t) and ga = sup,¢, ) ga(t)-
Using the Lipschitz-condition described in A2) we can obtain

[v:| < cl|ea — &),

where ¢ = Wéb;:iln(LIWé b;iln Jd + we + we b;iiL;ﬁd + L) which is a finite positive constant. J

Proof of Proposition 2. It can be obtained from (16) and(18) that

i
vi| < cw; | Al / jo: ()| dr 4 cw; o (). (30)
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Since 0 S v STt Ty, then 0K 7~ v <7< Tf and —-—%‘-'r < -—%V. Using Holder mequality[m], it
can be obtained from (30) that

t
/ e *ai(7)] - |vi(7)|d7 <
0
t T
f U cw; || Alle T AT 6 (7)] - ou (v) | d
0 0
t T t
cwi || Alle" 1 f [ f e"""'lm(r)l-lm(u)ldv} dr + / cwi e o2 (r)dr =
0 ) 0
T ; A ‘ A ¢
cwy || Alle 41T f e” 7 |oi(7)] [ / e“f‘"\ai(u)\du] dr + f cw e o2 (r)dr <
0 0 0

¢ t t
cwEIHAHe”A"Tf [ e_%qm(?‘)l [] e_%"‘m(u)ldv} dr +f cw; te Mol (T)dr =
0 0 0

t
!d*r+/ cw; e Mol (T)dr <
i 0

t 2 t
cw; | Alle AT {/ e"%"’lm(f)]d? +f cw e Mol (r)dr <
0 | 0

t t t
cw; || Alle" ATy { f B_MJE(T)dT} { f 1%] + f cw: te Mo (r)dr £
0 0 0

t
(cwgl + cwEIHAHTfe"A“Tf) / e 2 o2(r)dr. "
0

Proof of Proposition 3: From (13), it can be obtained that.
o; = ljug — L;u; — Liy;.
Substituting the above into (17) yields
g — &; = Aleag — ;) + bliug — Liug - Liv).

Since «;(0) = x4(0), ||b]]| = w;' and from assumption A1), l; < webmax, it can be obtained from the
above that

t t t
lea — |l < 1A f (@4 — 2:]|dT + brmas f s — a]d7 + b / i dr
0 0 0

Substituting (16) into (31) yields

t ¢
|za — ]| < (|A| + bmuﬂ)/ [ed — @:l[dT + bmaxf ur,i — ualdr.

0 0
It can be obtained by the Holder inequality and Bellman-Gronwall Lemma 2116] that

t &
(ea — a:l] <l / (@4 — @4]|dT + bmas f s — ugldr <
0 D

t Ty
1t 1T —1
/ bmax€ ( T)IuI,i — ’U}dldT g. bmaxe ! / € Tlui,i — ud,|d'r g
0 0

[T | Tf -2l 2 % [ 2
baxe ! | e (ur; —ug)°dr| | 1°dr| <
0 0 )

o=

1 [t 11
bmaerTf sz |/ e—)vr (ul,i — ud)2d7—] — bmaerTf sz Jiz (Tf)

where {; = ||A|} + bmaxc and [ = max(}A,l1). From (5) we have
oi = [we we] (®a — ),

1
05| € (W2 + w?) 2 ||®a — x|

Hence from (32) and the above, we can obtain (21) which completes the proof.
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