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Robust Trajectory Tracking Controller Design
for Mobile Robots with Bounded Input”
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Abstract Designing of robust trajectory tracking controller for mobile robots with parametric un-
certainties in the dynamic model and with bounded input is investigated, Based on the established
full dynamic error model, a robust tracking controller is designed using receding horizon control
(RHC) and linear matrix inequalities (LMls), Simultaneously asymptotically tracking position,
heading angle and velocities of mobile robots is realized in accordance with nonholonomic and input
constraints. T he sufficient condition of the system stability is given in terms of linear matrix ine-
qualities. Simulation results verify the feasibility and effectiveness of the proposed method.
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1 Introduction

Motion control of mobile robots with nonholonomic constraint (mobile robot for short
in the rest) has received considerable attention over the past few years. Depending on
whether the nonholonomic system is represented by a kinematic or dynamic model, the
tracking problem can be classified as either a kinematic tracking problem or a dynamic
tracking problem. Most of the existing results are obtained based on kinematic model, that
is, the system velocities are treated as control inputs and the dynamics is ignored. The ki-
nematic model of mobile robots is of limited use, as pointed out in [ 1|, “this simplified
representation does not correspond to the reality of moving vehicle which has unknown
mass, friction, drive train compliance and backlash effects”. Therefore, much effort has
been paid to the use of dynamic model where uncertainties in the robot physical parameters
can be explicitly taken into considerations in designing the controller. The controller de-
signing schemes based on dynamic model can be basically classiiied into two kinds; one 1s
the nominal controller is designed based on the assumption that each parameter in the dy-
namic model is exactly known; while the other takes the uncertainties of the dynamic mod-
el into account and the robust controller designing is performed. The main trajectory
tracking approaches based on the dynamic model include input/output feedback lineariza-
tion method'?’* ; sliding mode control method"*~" and backstepping method**~'*!, Howev-
er, few results have been obtained on control design of the presence of uncertainties of the
dynamic model'! ™1,

In this paper, a full dynamic error model of mobile robot is established and represen-
ted in the polytopic form. And then using RHC-1LMI method, the asymptotic convergence
to zero of the trajectory tracking error is realized with respect to the selected performance
index in the presence of the system uncertainty, as well as the nonholonomic constraint,

2 Construction of full dynamic error model and problem statement
In this paper, a three-wheeled mobile robot moving on a horizontal plane i1s considered
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as shown in Fig. 1. The mobile robot consists of two driving rear wheels and a castor front
wheel. The radius of the wheels is denoted by 1
r and the length of the rear wheel axis is 2..
The system inputs are two torques r; and 7,
provided by two motors attached to the rear
wheels.

The full dynamic model of the considered
wheeled mobile robot is given by-"#14-15]

F = ;sin¢+ﬁc1cos¢

v oA .
y = ;n—cosgb—l—ﬁ“mmf» (1)
$ = au; Fig.1 The configuration of the mobile robot

rsing — ycosp = 0
wheref=1/(rm),a=1/(rI), and that m and I denote the mass and the moment of inertia
of the mobile robot, respectively. u; =7, +1r; and v, =1, — 1, are the control inputs, and A
is the Lagrange multiplier, given by A = — m$ (xcosp+ ysinp). The parameters r,m, 1,1
are supposed uncertain with bounded uncertainties:
r=7+Ar,m=m+Am, [=1T+Al, [ =1+ Al
with 7, m, I, [ being the nominal values, and
AP | << Ay | AM [ A s | AT << Al s | AL << Al
With Arpex s AMar s Al pex s Al being known constants, Therefore, the above variation of
the model parameters produces bounded variation intervals for o and 8, that 1s,

a = a T Day B: E+Aﬁ5 [Aﬂ.’[g Allmay s |Aﬁ‘g Aﬂmax
Using Lagrangian formulism, the full dynamic model (1) can be rewritten as tollows.

vecosp|] [ O T
v sIng 0
z = w |1 | 0 (2)
0 By
0 U g

where z=[xz y % v w | where vandw are linear and angular velocities, respectively.
Letz,=[xy va Pa 7vs wa] and u, be the desired position, heading angle, linear
velocity, angular velocity and the input corresponding to the desired trajectory, respective-
ly. Define.
€1 =— X7 Tgs €2 — Y7 Vas €3 — ?5“55&9 €4 — V7 Ugy €5 — W Wy
Also define e=[e, e, e e e ] . Then we obtain

0 0 0 cos(¢p;+e) 0lTea} JO O
0O O O sin(9-'>d +€3) 0 €7 0 O - -
é=10 0 0 0 L{(es |+ [0 O ™ |+
_ U2,
0 O O 0 4, €4 ﬁ 0
0 0 O O 0] les] 0O «

) (3)

r‘@’dCOS(‘#’d + €3 )— U4COS (?!’d )
‘UdSiIl(‘yf’d €3 ) UdSin(ﬁi’d)
0
0

O

ha s, —

where wi, = u; — Uy » Uz, =t —uy. Rewrite (3) in a simplified form as follows.

¢ — Ae+ Bu,+ A (4)
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In order to facilitate the designing of controller, the last term in (4) is linearized a-
bout the equilibriums, 1. e.,

0 0 —uysin($;) 0 07 [er”
0 0 wycos(P;) 0O 0 |e
A=A(o>+(§j—T)_0 =10 o 0 0 0 les|=Le (5)
- 0 0 0 0 0] e,
0 0 O 0 0] Les_

Then system (3) becomes

é = (A+L)e+ Bu, (6)
Equation (6) is discretized using calculus of differences with a sampling period T, and we
have

1 0 — TUdSin(¢’d) TCOS(¢d(k)+ e; (k)) 0
0 1 Toycos(p;) Tsin(g,(k)+e;(k)) O
ek+1)={0 0 1 0 T e(k)+
0 O 0 1 0
0 0 0 0O 1_
. 0 - (7)
8 8 “up, ()7
Tﬁ 0 L us, (R) _
0 Ta_
Rewrite (7) in the polytopic form with the control input constraint, and we have
e(k+1)= A(k)e(k)+ B(k)u, (k)
1,
[Ak) BJe o= D6 (A B
1=1 (8)
L
231' =1, & }3’ 0
:==]
]ue_|_ud "2 < Umax
where u,,, 1S a known constant. For system (8), we choose L=4, and
1 0 — Twoyusin(¢,) —T 0° 1l 0 — Twusin(¢,) T 0°
0 1 Twycos(e,) —T 0O 0 1 Twycos($,) T O
A =10 0 1 o T|, A, =1]0 0 ] 0 T
O O 0 1 0 0 O 0 1 0
0 0 0 0O 1_ 0 0 0 S
1 0 —Touusin(¢,) T 0 1 0 — Touyzsin(¢;,) —T 07
0 1 To,cos(9,) —T O 0 1 Twycos($,) T 0
A; = [0 0 1 0o T|, A, =10 0 1 0 T
0 0 0 1 0 0 O 0 1 0
0 0 0 0 1. Qo 0 0 0 1
-0 0 ~ 0 0
0O 0O 0 0
B,=| 0 0 |, By,=1] 0 0 |, B;=DB,=0
18 s 0 11 ex 0
0 Tat min_ 0 Ta qax_

where amn and am., as well as By, and B.., denote the minimum and maximum of the varying
ranges of ¢ and 3, respectively.

In this paper, we design a state-feedback controller for the uncertain system (&) guar-
anteeing the robust asymptotic tracking of the given desired trajectory z, in the presence of
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system uncertainties while satisfying the nonholonomic and input constraints.

3 Robust controller design

RHC is an open-loop optimization design procedure where plant measurements are ob-
tained at each sampling time £ and a model of the process i1s used to predict future outputs
of the system. The control input sequences are computed by minimizing a cost function J,
(k) over a prediction horizon. In the receding horizon framework, only the first computed
control move is implemented. At the next sampling time, the above procedure is repeated
using the new measurements from the plant, The following robust performance index is
chosen for system (8).

min . max Joo (B),
w, (tilk), i=0,1,vm [Altd Bt ]€Q, i20

(9)
Joo (B) = Z(e(k+z | P)'Qie(k+i | k)t u (k+i| B)TRu, (k+il k))

where e(k+1|k) denotes the error at time k+1 predicted based on the measurements at
time k3 u, (k+:|k) is the control move at time 2+i¢ computed by optimization problem (9)
at time k; e(k|k)and u, (k| k)denote the error and the control to be implemented at time
k, respectivelys Q,, R are positive definite and symmetric weighting matrices. Select a
quadratic function V(e) =e' Pe, P>0 for state e(k|k) =e (k) of system (8) with V(0)=
0. At sampling time %, suppose Vsatisfies the following inequality for all e (A+i|k).,
u,(k+ilk), i==>0 satisfying (8), and for any [A(k+i) B (k+i) ]EQ, i=0,

Vietk+i+1|k))—V(e(k+i]| k))<

—(e(k+i | B)"Qek+il k)t u.(k+ilk)'Ru,(k+1i]|k)) (10)
For the robust performance objective function to be finite, we must have e (oo |k) =0
where e (oo |k)is the error prediction of infinite horizon at sampling time %2 and hence,
V(e(oo|k))=0. Summing (10) from i=0 to i=oc0, we get

—V(e(k | R))<<— J (k)

Thus
max Jo (B V(e(k | k))

_ _ [ACkD  Brktd]€Q, 20 |
This gives an upper bound on the robust performance objective. Thus, the goal of the ro-

bust RHC algorithm is to synthesize, at each time step k£, a constant state-feedback control
law u, (E+1|k)=Fe (k+i|k)to minimize this upper bound V (e(k|k) )and only the first
computed input u, (k|2) =Fe (k|k) is implemented. At the next sampling time, the state
e(k+1) is measured and the optimization 1s repeated to compute F again.
Minimizing V(e(kik))=e(k|k)"'Pe(k|k), P>0 is equivalent to
min Y

7,0
_ T - (11)
s. L. I e(k | k) =0

Le(k | k) Q
where Q=yP ' >0(see | 16 ]). Moreover, from mequahty (10) it follows that"'®
(ACk+ i)+ Bk+i1)F)TP(A(k+i)+B(k+i)F)— P+ F'RF + Q, <0
Substituting P=yQ ', Q>0, into the above inquality, multiplying both sides by Q, sub-
stituting Y=FQ and using Schur complements, we can draw the following conclusion"'*-.
Conclusion 1. If and only if there exist Q>0, Y=FQ and ¥ such that

Q@ QAT+Y'B! QQF Y'RY

A.Q-+B)Y 0 0 SO
Q12Q 0 ')’I O
RZY 0 0 yl

(12)
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the quadratic function V can be guaranteed to satisfy (10), that is, the uncertain system
(8) has robust stability and the feedback matrix is given by F=YQ '.

In the following, the constraint imposed on the control input u is transformed into the
constraint imposed on the control error u,. Since u=u,+u,, we have

lul, = [w. + w2 < o
Due to ||u,+u,||,<<|u.||,+ |u,|2:, we obtain
e |2 < (onax — | Uall2) = e
Therefore, using Schur complement, ” T PG/ AE
o] Y
B% Qd?’ 0 (13)

From the above analysis, we can have the following theorem.

Theorem 1. The receding horizon state feedback control law u, (k) = Fe (k) robustly
asymptotically stabilizes the uncertain system (8) in the presence ot the control input con-
straint and the feedback matrix is given by

F=YQ" (14)
where Q >0, Y are obtained from the solution (if it exists) to the following linear objective
minimization problem:

min Y (15)
y,Q,Y
subject to
- 1 e(k | B)'
= () (16)
Le(k | k) Q

and (12) as well as (13).

4 Simulation results

In this section, physical parameters of a LABMATE mobile robot’' are adopted to
perform simulation to test the proposed control scheme using MATLAB. The nominal val-
ues of the LABMATE are as follows:m=80kg, =2kgm*, r=0. 075m, [=0. 325m. The
sampling time 1s chosen asT = 0.1s. The given desired reference trajectory is z; =
[2sin(t) 2cos(t) —t 2 —11', thatis, v,=2m/s, w,= — lrad/s,u, =0. At time
t=0, 2,(0)=[0 2 0 2 —117". The initial condition of the mobile robot is chosen at
z(0)=[4 2 —=x/3 0 0]". The weighting matrices in the performance index are Q, =
I, R=2X10"" and u,.x=4. Here the effect of the main varying parameters is considered,
namely the mass m and the moment of inertia I. Let the mass and the moment of inertia be

m= (im,1.25m,1.5m) and I=(I,1.25I,1.51), where m and I are the nominal mass and
moment of inertia, respectively. The corresponding parameters are (a,(4/5)a,(2/3)a )

and (B, (4/5)8,(2/3)8). The simulation time is 20s. Simulation results are shown in
Fig. 2 to Fig. 4.

7]
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0.4 b L - 250/
—=50%
n L
o T ™
Z, ;o
"'-.::' " P
:gw

[ ] | ] 1 ! | i I i I i i ] | | I 1
% 20 40 60 80 100 120140 160 180 200 0 20 40 60 80 100 120140 160 180 200
Sampling time Sampling time
Fig. 2 Control input error u,, Fig. 3 Control input error w,;
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Fig. 4 Position trajectories

As seen from the simulation results, the proposed approach can realize the robust as-

ymptotic tracking of the desired reference trajectory in the presence of parametric uncer-
tainty in the dynamic model of the mobile robot and control input constraint.

5 Conclusions

First, the full dynamic error model is established and represented in the polytopic

form. Secondly, a robust tracking controller is designed using RHC-ILMI scheme and the
simultaneously asymptotical tracking of position, heading angle and velocities of the mo-
bile robot is realized in the presence of the parameter uncertainty in the dynamic mode!l and
control input constraint. Finally, simulation results verify the feasibility and effectiveness
of the presented method.
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