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Abstract Based on the intrinsic physical background of nonlinear system, a system identification
model 1s derived from the inherent systematic characteristics, a priori knowledge and experiences,
And then, the GFNN (generalized fuzzy neural network) is put forwand, the GFNN approxima-
tion theorem is proved. The structure-self-organization and parameter-self-learning algorithm is
proposed, which can automatically and simultaneously deal with the process of the system struc-
ture identification and parameter self-learning under predefined precision, so that the novel on-line
structure self-organization of GFNN is realized. Simulation shows the nonlinear approximation a-
bilities of GFNN, especially for identification of slow time-varying plant. The GFNN is a success-
ful integrated algorithm of fuzzy logic and neural network,
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1 Introduction

Artificial neural network and fuzzy logic system are two successful methods for the
modeling and identification of nonlinear system. Up to now, many exciting improvements
have been made and some novel solutions have been provided for nonlinear problem resol-
ving. But for problems about the intrinsic nonlinear characteristics of the plant, such as
network structure, information interface, parameter initials, convergent speed of the opti-
mization algorithms, etc. , no satistying solutions can be found.

Fuzzy neural network 1s the integration of fuzzy logic system and artificial neural net-
work, But to be an effective {fuzzy neural network, it must at least have the following fea-
tures: reasonable network knowledge structure, extensible knowledge base, intelligent

and wide information interface, and so on.

2 GFENN neuron & GFNN network structure
2.1 GFNN neuron
The fundamental component of GFNN i1s the neuron which shows a relationship be-
tween the input and output and implicates an interence mechanism. So GFNN neuron
should possess the generalized network structure, the information storage and processing
abilities. Specifically, the neuron can process different input information, such as linguis-
tic information and data information, Gaussian random information, etc. Its inference
mechanism results in a wide selection range of activation functions, so many membership
functions can be adopted as the activation function of the neuron. In its relatively simple
network structure, GFNN neurons in different layers take different roles and show differ-
ent characteristics. A typical GFNN neuron is shown in Fig. 1. Its input-output function is
__ N gy g=10
w = f(g—40) = 0, g< 0 (1)

where g=g(X,®) is the inference function, @ is the stored information parametric vec-
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Fig.1 GFNN neuron

tor, X=(x,,x25*** yx,) 1s the input vector, § is the threshold and f( ¢ ) is the activation
function. Obviously, the neuron produces its output based on its intrinsic inference mecha-
nism, such as Gaussian inference function.
2.2 GFNN network structure
2.2,1 Network structure

GFNN is a 3-layer feed-forward network that consists of three layer neurons (Fig. 2,
MISO case), 1. e., the input layer, hidden layer and output layer. These layers are corre-
sponding to the three phases ot FLS (Fuzzy Logic System) respectively and the key parts
of FLS, the fuzzy inference and the fuzzy rule-base, are integrated into the hidden layer.
The inference mechanism behaves as the inference function of the hidden neurons. So the
hidden neurons are corresponding to the fuzzy rules and the number of hidden neurons is e-
qual to that of fuzzy rules.
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Fig. 2 GFNN 3-layer network structure

1) Information match degree (IMD)
Definition 1. For an input X, the Information Match Degree (IMD) corresponding to
the jth rule 1s
Ai(X) = g, (X,P;) (2)
The physical meaning of A; (X) is very clear and it shows the match level between the input

and the jth rule. For the activation of the input, i1t shows the inner response level of the
jth hidden neuron.

2) Information believable level (IBL)

Definition 2. For an input X, only the hidden neuron whose output is greater than a
certain level can influence the neurons in the output layer. This level is defined as Informa-
tion Believable Level (IBL), represented by §;. Actually, the IBL is equivalent to the
threshold of the traditional neuron. So the output of the jth neuron is

| ' s WA > .
zj:f(gj(xiq)j)_“ﬁj): <gJ(X @J) £ __...--"'5}

3
0 & gj<9j (3)

2. 2.2 Initialization of network parameters

Based on the above definitions and the physical background of FLS, the imtialization
process of the neuron in each layer is shown as below.

1) Input layer

For the singleton fuzzy generator, set @=0,=0,g(X)=X.
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2) Hidden layer

Corresponding to a fuzzy rule, each hidden neuron has two main functions: informa-
tion storage and fuzzy inference.
a) Information storage

The adjustable vector @, of the jth neuron is corresponding to the parameter vector of
the jth rule.

b) Fuzzy inference

The inference function of the jth neuron is corresponding to the fuzzy inference princi-
ple and acts as the fuzzy membership function. For product inference principle, we can get

g, (X,P;,)= | l u,, (x,)» where u;; (x;) is the input membership function for the input x;, @,
t=1
can be initialized in the same way. For simplicity, we can set §;, =68 (4, can be set by seli-

learning or commonly predefined as 0<C§* <{1). So the output of the hidden neuron is

e = flg, (X,0,) —g°) = 51 KP)> 8 =0

4
toa gj<3* ( )

3) Output layer

This layer i1s corresponding to the fuzzy defuzzier phase. Choosing the barycenter de-
fuzzier methods with =0, the process is shown as below. There exist two cases.

a) If there exists 2;,>0, j=1,+,M(z) in the hidden layer, that is, there exist M(#)

valid outputs and M(¢) hidden neurons which satisty g; (X, ®;) >8" , then the output of
Mz M

the output layer is y=g(Z,®, )—Ev}z} , where z =z /Ezk, 2= (21 +22 9" y2Zpmp ) 18 the

valid output vector of the hidden layer, v; 1s the center p051t10n of the jth neuron, @,=
(v 52 9" »Umn ) 18 the information parametric vector of the output neuron, M(z) is the
number of the hidden neurons which have valid output at time ¢z.

b) If for all hidden neurons, z,=0, j=1,+,N(2), where N(#) is the total number ot

hidden neurons, that is to say, there are no valid outputs and the outputs of all hidden neurons
M) N

are less than the IBL, then instead of the equation 2, =2,/ sz we have z,= 1&‘1:-.1:4{(‘.5.{Jr (X,
k=1 7= 1
®,)). That is, we use the output of the hidden neuron which has the maximum IBL as the

input for the output layer. If this neuron is the ith one, then the output of the output layer
1S y=1;.

Comment: v, is equivalent to the output connection weight of the traditional neural
network. We think that this parameter should be integrated into the neuron based on the
understanding of the bionic neuron.

3 GFNN approximation theorem

We will prove this theorem through constructed proof techniques.
3.1 GFNN approximation theorem in 1-dimension space

Theorem 1. Assume f(x) is the continuous function defined in (—oo,c0), and that
there exist llm f(x)=A and lim f(x) =B, where A, B are constant. For any ¢>0 and

I S o J— O

x& (—oo,c0), there exists a GFNN function A(x) satisfying

| f(x) —h(x) | <e (5)
Proof.

From assumption, for any e=>0, we can find M, N>0 which satisty

1) if x>M, there exists | f(x) —B| <l¢/3;

2) if z<C—M, there exists | f(zx)—A|<e/3;

D if |2/ | <M, |7|<M and | 2" —2"| <<1/N, there exists | f(z')— f(2") | <e/3.
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Now we divide [ —M,M | into 2MN sections and the length of each section is 1/N.

Set
— M=z, <z < <zxzmw =0y < <xomw =M
We know that if 2 € (z,02,21) s E (s xi1) si=0,1,,2MN—1, there should be
| f(2)— f(x") | <<e/3. Let t; be the point in section [ x;,x;+; ] at which the maximum
membership value exists. Choose a reasonable membership tunction g; (X,®;) and a neu-
ron threshold 4, in this section, which satisfy f(x;) = f(x;+:) =6;, and the output of hid-
den neuron in this section 1s

rgj (I’@j)’ o~ :x_j 5xj_|_1:
<i — (x,D;,))—F. )= | — ~
= 18 (@) 0) 0, z & [z, y2;44 ]
Simultaneously, select the output neuron as a singleton, that is, the output set contain on-
ly one point f(¢;) which satisfies ;o (f(¢;))=1. So when the membership valueis 1, v; =
().

So from the definitions of GFNN, for x & (—oo,00), we can prove this theorem in
the three sections respectively.

1) If x & I:_"MaM:Ia then SEttingIG [Ikaxk+1]ak:'09 1y, +y, ZMN —1, we have
{ Zf(gk(x,qjk)_gk):gk(xgd)k). Since }Zf;a LE‘ <1/Ng y:h(.lf) — Ug ——f(tk)r E’ll’ld
z; =0 jFk

therefore there exists | f(x) —h() | =| fFlx)— F1) | <e/3<e.

2) It x>M, there exists gamv—1(x,Pory—1) = max (g;(x,®P;)), hence y=h(x)

y 2ZMN — 1

= gpv—1 = f (tosv—1) and | ftamw—1)— F(M) | < 8/39 \f(M)—'B\<€/39 | f(x)—B| <
e/3s so | flx)—h(x)|=| flx)— Fltoam-1) | <e.
3) It x<C—M, there exists g,(x,@P,)= max (g;(x,P;)), hencey=h(x)=v,=

=U!'"12m__1

f(to) and ‘f(to)_f(__M)‘<E/3a |f(__MJ)_'A|<€/3y ]f(x)_A‘<e/3-- SO jf(x)_
h(x) | =] flx)— f{t) | <e.
This theorem is proved.

Corollary. Assuming f(x) is a continuous function defined in a limited section [ a ,b:l \
for any €0 and all x€ {a,b], there exists a 1-dimensional GFNN A (x) which satisfies

| flx) —h(x) |<<eg (6)

That is, A(x) is dense in Cla,b].
3.2 GFNN approximation theorem in multi-dimensional space

Theorem 2. If g(x):R'—R’ satisfies g€ L;, and there exists a GFNN A(x) which is
dense in each L?[a,b], then for € K, h(x) is dense in L?(K), where K is a compact set
defined in R".

Proof.

From reasonable shift and transform, we can limit space K to be K& | —1,1]". For
any ¢ >0, exists § >0 which satisfies

I\fa(x) — f(x) | ey < /2 (7)
Extending f;(x) in section[0,1]", we have
folxy st yz,) s (1 sx,) € 0,1

h&;(Il s **° s.lfn) ==

p—
_FT .
pp—
W

k_}p«i‘?(xl 9" e T Lp ettt !In) ’ (JL‘1 s *** 9.1?”) %
For all x€ [ —1,11", we can find R>0 which satisfies 2 (1
R

0,1}

This means

3
<I'

E (1 ‘ ;2‘2) c.(hs)e™* — hy(x) < = (8)

|| <R L? (K) 4
From the definition of the Fourier coefficients and the even functional characteristics of
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hs(xys°*»x,), then exist real numbers d,, ..., which satisfy

n

” Z dml’""mn cosx(mlxl —I— ser + mﬂxﬂ) — }13 (.I‘)

Z%R
Obviously, for any €[ —1,1]", there exists cos(u) € L*[ —v/nnR w/nnR]. From the cor-
ollary of Theorem 1 and the assumption of this theorem, we can find a GFNN A" (), i. e.,

h(x), which satisfies |A"(u) —cos(w) | o[ —/mer /a1 <<e/4L s where L= 2 ‘dml,...,m

| m | <R

3
< ° (9)

LP(K)

Thereby, [hA(z)—cos(zm * x) | LP(K)<4LL.
lh(l‘) — hs(x) “LP(K) < g/2 (10)
From tormulae (7) and (10), there exists

” flx) —h(x) ” LP k) < €
The Theorem 2 is proved (relative lemmas seen in reference 5). (]

Theorem 3. If a GFNN A(x) constructed in g(z) :R'—>R! is dense in C(R'), then for
all z&€ R", h(x) is dense in C(R").

Proof. We know h(x) € C,(R"). From Theorem 2, any continuous function in C(R")
can be approximated by a GFNN respectively. So we can draw the conclusion that A(x) &
C(R™).

The Theorem 3 is proved (relative lemmas seen in reference 5).

Hence, the system constructed by GFNN can approximate any continuous nonlinear
function in C(R") with any predefined precision. More importantly, the GFNN activation
functions are bounded, but not necessarily continuous and this provides a wide choosing
range for the GFNN activation functions.

Substituting it into formula (9), we have

4 The network self-organization and parameter self-learning algorithms of GFNN

Based on the GFNN approximation theorem, for a continuous nonlinear function y=
h(X) defined in a close set KCR" and any ¢>0, we can finally find a GFNN by the self-
organization and self-learning process, and its output y=h(X) satisfies |e| <le(e=y—3).

In the identification process of GFNN, the network structure self-organization and pa-
rameter seli-learning process are going forward simultaneously. Starting from the initial
structure, the network selt-learning process begins, When a hidden neuron 1s added or ex-
purgated, the parameters of each neuron will be calibrated by self-learning algorithm to
meet the best approximation performance. Now, the algorithm that can automatically ad-
just the network structure based on the background of the singleton fuzzy generator, prod-
uct fuzzy inference principle, Gauss membership function and the barycenter defuzzifica-
tion method is described below as an example.
4.1 Inittalization of the GFNN

At time ¢,, assume there is a nonlinear system y=h(X), and that there always exist
M(t,) (M(t,)=0) IF-THEN linguistic fuzzy rules. Based on these M(z,) rules, we can
construct the initial 3-layer feed-forward GFNN with M(z,) hidden neurons. And the ad-
justable parameter vector of the jth neuron is @, = (X, ,0;,) (j=1,2,,M(%)), where X, =
(X1, 9Tz, 9*** +Xn; ) and g; = (g1 2025 ***»0,; ) are the center position and width vector of the
precondition of the fuzzy rules, respectively. The adjustable parameter vector of output

layer @, = (v, 054" » Uz ) 1S the center position vector of the post-condition of the corre-
sponding fuzzy rules.
4.2 The network self-organization algorithms

1) Introduction

First we set a match degree criterion A* in the hidden layer. It the IMDs between the
input and hidden neurons are all less than A™ , then the amount of hidden neurons is 1nade-
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"quate and new neurons should be constructed. If the IMD of the input and a hidden neuron
is less than the threshold of this neuron, that is, the information believable level 6*
(IBL), we think this neuron has no effect on the output layer., The expurgation of neurons
is processed according to the predefined precision and the match degree criterion, that is,
if the distance of the center position of the post-condition of two rules is in the range of the
systematic error and the IMD between the two rules is greater than the match degree crite-
rion, then one ot the two rules should be expurgated. The process can be done regularly.
Based on the automatic addition and expurgation of the hidden neurons, the novel GFNN
network on-line self-organization is realized. For the parameters of the hidden neurons, it
can be adjusted by the self-learning algorithm, such as BP algorithm or the others, The
network selt-organization and parameter self-learning are done automatically in the 1denti-
fication process.

2) Network self-learning algorithm

Considering the predefined precision ¢, the match degree criterion A* and the IBL §* ,
and based on the background of fuzzy logic system, this algorithms 1s shown as below.

A) Add new hidden neuron

Let the identitied network be GFNN(N(¢t—1)) at time t—1, that is, the network has
N(2) hidden neurons at this time. Assume the new training data pair is (X” ,y,), where
XY =(xt? s 25?y oy 2y’ ) and y, =h (X ), and the output of GFNN is GFNN (X?),
There are two cases.

First: |GFNN(X*?)—4y,|<le. This shows that for the current input, the output of
GFNN meets the identification precision and no new neuron is necessary to add.

Second: |GFNN(X“)—y,|>e. This shows that after many adjust steps the system
still can not meet the identification requirements. So this case shows that the system struc-
ture is inadequate or the predefined parameters are not reasonable, such as the match de-
gree criterion A* , IBL 8" . Therefore, whether a new neuron ts added will be according to
the detailed circumstance.

a. There exists a number i (1<i<N(z)) such that for the input X, the ith neuron

satisfies
N(t)

g,;(XaCP,;) — maX(gj (Xa(pj)) > A
That 1s, the i/th hidden neuron has outputj but its output has not enough contributions to
the total system output. This implicates the match degree criterion A™ and IBL 4 are
small and each hidden neuron has an output of a wider range, so the system can not derive
the accurate output. We can adjust this parameter with many reasonable algorithms.
b. There does not exist a number 1(1<i<{N(¢))such that for the input X, the output
of ith neuron satisfies g, (X,®;)>1", i.e., max g,(X,®P;)<A”*. At this circumstance,

1= i . N(8)

we think the amount of hidden neurons is inadequate and a new neuron O, should be added.
This neuron comes with the stored parameter vector ¢, = (X,, 0.) which satisties
X; :Xu)

. , U,=—1%,, where g, is the minimum initial width vector of the specified rule and v,
O: — 0o

1S output parameter of output neuron.

B) The expurgation of the invalid neuron

The expurgation of neurons is processed according to the predefined precision and the
match degree criterion, that is, if the distance of the center position of the post-condition
of two rules is in the range of the systematic error and the IMD between the two rules is
greater than the match degree criterion, then one of the two rules is redundant and should
be expurgated. The process can be done regularly and will influence all hidden neurons.

In all hidden neurons, two of them are selected, O, and O, their stored parameters are
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O, =(X1,01)» &, =(X;,0,). And the output of the corresponding output layer are v, , v, ,
respectively. If | v, —v, | <le and | g, (X;,®,) | >A" are satisfied, then one of these two
neurons 1s redundant and 1s expurgated. Go on with this process repeatedly till all hidden
neurons are processed.

3) Network parameter self-learning algorithms

The purpose of parameter seli-learning is to reduce the system error to the predefined
range by monitoring the error variation. Assume at time ¢, the error between the output ¥,

and the plant output y is |e, | >e. The post-propagation learning algorithm is applied, and

(_r—-l)
J

of the output layer and the parameter vector @' " of the hidden layer

are adjusted respectively until |e, | <le is satisfied. The information stored parameters v}”

the parameter v

and @}” are derived and the process is advanced to time t+1. In the process, the common
algorithm i1s BP algorithm.
4.3 The principle for termination of system identification

In a long period T, , if the number of hidden neurons does not vary and the error be-

tween the output of GFNN, ¥, and the plant output satisfies |e|<le, the structure self-or-
ganization and parameter self-learning algorithm will terminate automatically. That is to
say, all invalid neurons have been deleted and the system architecture is on the stable.
Since GFNN is an on-line identification algorithm, GFNN will converge to a stable state
through trainings under the predefined precision when the plant is not varying. When the
plant varies, the unsatisfied precision will awake the identitfication process and the process
will continue till the termination conditions are all satisfied.

5 The on-line identification and analysis of the dynamic time-varying system

Assume the plant satisfies the difference equation y(k+1)=0.3y(k)+0.6y(k—1)+
g(u(k)), and that the unkown part is
‘cos(u(k)), k <900
0. 6sin(wu(k)) + 0. 3sin(3xulk)) + 0. Isin(orulk)), 900 < -2 < 1600
cos(u(k)) —Zl—sin(u(le)), k> 1600
k
From the plant model, the structure of the plant model varies at time 900 and 1600. We
apply GENN to identify the structure of the plant. We adopt the difference equation based
on the series-parallel connection model (+1)=0. 3y(k)+0.6y(k—1)+ f(u(k)). In
GFNN, the simulation parameters are set as follows: the system identification precision ¢
=10"°%, Information Match Degree criterion A* =0. 7, the minimum Information Believa-
ble Level 8 =0. 4, the neuron function i1s Gaussian function and the initial width parame-
ter 6, =0. 8, and the initial number of the random selected hidden neurons M(z,) =10. The
simulation results are shown in Fig. 3 and the identification error is shown in Fig. 4.

g(u(k)) = <

— R
1) p— - - y — 1.0><10 -
0.8 .‘
0. 6
| T .
0. 2
AR ] '
VY TTHT —0. 2 |
0 ) —0. 4
\ —0, 6
— (). 8 | |
0 500 1000 1500 2000 2500 —1.0, 5001000 1500 2000 2500

Fig.3 The identification result Fig.4 The identification error



874 ACTA AUTOMATICA SINICA Vol. 29

Simulation results

When the system converges, the number of hidden neurons under predefined precision
1s 59. In 0~900, the system converges at time 130, the number of hidden neurons 1s 57,
In 900~1600, it converges at time 980 with 59 neurons, and after time 1600, it converges
at time 1679 with 59 neurons. The maximum identification error aiter convergence is 9.
9213 X 107° (from time 1679).

The analysis of simulation

It shows that GFNN can identify the dynamic time-varying system on-line and can
process automatic structure adjustment with parameter seli-learning for the structure var-

yving system with high dynamic trace speed and can automatically terminate the identtfica-
tion under predefined precision.

6 Conclusions

This paper extends the Chen approximation theorem and the range of the activation
function selection. It shows that any membership function with distance-measure charac-
teristics can be merged into neural network. From the theorem proof, the GFNN function-
al expression is a simple constructed function. GFNN has the following features.

1) GFNN can realize novel on-line network structure selt-organization and this meth-
od has general meaning. And the problems of the predefined network structure in neural
network are also resolved.

2) GFNN can be used for on-line identitication of the time-varying nonlinear system
because of its features of neuron expurgation, simple 3-layer structure, small computation
and so on, Moreover, GFNN has the background of fuzzy system and the parameters have
the explicit physical meaning. So GFNN can be easily realized, on the other hand, the ini-
tial values of the adjustable parameters are also easy to setup and these are helptul to im-
prove the convergence speed and the global optimization pertormance.

3) GFNN has a wide information interface for structural Iinguistic information and da-
ta sample information. This teature makes GFNN a generalized model. The neuron of
GFNN has information storage and inference functions as that of the biological neurons,
and it provides this simple 3-layer network structure more powerful functions.

4) GFNN can produce many kinds of network structure for the problem resolving
based on the fuzzy logical systems composed of many kinds of fuzzy generator, fuzzy infer-
ence rules, defuzzier., So it is one of the generalized methods.

Thereby, GFNN is successful integration of fuzzy logical system and artificial neural
network. It is shown that fuzzy logical system, artificial neural network and the other out-
standing optimization methods will be integrated on a higher layer and compose an inte-
grated intelligent system.
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