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Robust H.. Control for a Class of Nonlinear Systems
with Input Unmodeled Dynamics”
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Abstract The problem of robust H.. control of a class of nonlinear systems with input dynamical
uncertainty is dealt with. By the recursive design approach, a robust controller is constructed such
that the closed-loop system has an arbitrarily small L, gain from disturbance to output and in the
absence of disturbance, the closed-loop system 1s globally asymptotically stable.
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1 Introduction

The problem of H..control occupies an important part of classical as well as modern
control theory. Several important problems such as robust control, output regulation,
model reference and tracking control can be recast as an H.. problem'*, The robust H..
control of nonlinear systems with structural uncertainty has attracted considerable atten-
tion, as in [ 3], while, with the nonlinear systems having input unmodeled dynamics, such
a problem has not received sufficient attentions. This paper deals with the robust H.. con-
trol problem of a class of nonlinear systems with input unmodeled dynamics and presents a
method for the construction of the robust controllers.

2 Problem formulation
We consider a class of nonlinear systems of the form

z = f(ZpJﬁ) “i—p(Zy.Il)w
.I-l — Ig+f1(ng)+p1(st)w

I, , = I, _|_fr—1(z!x) +Pr~1(zaX)W

-I:r :U—l—fr(Z;X)—l‘Pr(z,x)w (D
Yy = I

E = ACE) + bu

v = c(€&) 4+ u

where zE R, EER? yx, ER, i=1,+yry, x=C(x15**,x,) are the system states, u € R,
yE R, w& R? are the system input, output and disturbance, respectively, f and p are con-
tinuous tunctions with f(0,0) =0. Throughout this paper, we restrict continuous func-
tions f,, pi» 1=1,,r by the following assumptions.

A,;) There exists a number # >0 such that for each i=1,+,r,

| filzoo) [<<p(llzl +] o [+ 4]z 1)
A, ) There exists a number M >0 such that for each i=1,,7r, | p;(z,x) || <M.
The &-subsystem

1) Supported by the project “973” of P. R. China((G19980020300) and the University Doctoral Foundation of the Ed-
ucation Ministry of P, R. China(98042212)
Received October 28, 2002; 1n revised form August 6, 2003

W EB 2002-10-28; WWEEMMAHE 2003-08-06




No.Z  WANG Xing-Ping et al. : Robust H.. Control tor a Class of Nonlinear Systems with <+« 177

E=A) +bu, v=c(&)+u (2)
with input ¥« € R and output v€ R represents the input unmodeled dynamics, in which b&
R? is an unknown vector ard A(&),c(§) are unknown continuous functions vanishing at ze-

ro. Clearly, system (2) has relative degree of zero. To restrict the admissible unmodeled
dynamics, we make the following assumptions.

B,) There exists a constant K >0 such that || b || <K.
B,) The zero dynamics of §-subsystem

E= ACE) —bc(E) A Ay (&)
1s such that, when it i1s disturbed by d, and d.,

g = Aa(§+d1) +d2
there exist positive numbers a; ,a, and a C', positive definite, radially unbounded function
V() such that
oV
el
B,) There exists a constant ¢ >0 such that
() || &
The admissible conditions B, ), B,) and B;) were used in [ 4, 5], under which the ro-
bust stabilization problem of nonlinear systems hike (1) were investigated. The objective

2

— o

(A, (E+d,))+d, )<< a H (&7 T

4k (3)

of this paper is, under the assumptions A,)~A;) and B, ) ~DB,) . to construct a state feed-
back controller for systems (1) to attain global disturbance attenuation with internal sta-
bility. The precise statement of this control problem 1s that for any given Y>>0, find a
state feedback controller
u = u(x) (4)
with #(0)=0 such that
1) for any w(¢) € L,{ 0,22), the response of the closed-loop system (1)~ (4) starting
from the origin satisfies

T T
J L y(2) |°de < VZJ | w(z) || “de for all T = 0
] 0

2) when w(t) =0, the closed-loop svstem is globally asymptotically stable at the equi-
librium (z,x,&) =0,
In terms of [ 2, 6 ], a dissipation inequality plays a fundamental role in the problem of
H . control, on the basis of which the problem of H.. control becomes how to construct a
controller and a storage function that make the dissipation inequality true.
LLemma 1. Consider the system
¢ = f(x)+ g(x)w
y = h{x)
where x€ R" .w&E R, yE K, f(x) and g(x) are continuous functions with f(0)=0,h(0) =
0. Y>>0 is a given number. If there exist a C', positive definite, radially unbounded func-

(5)

tion V{(x) and a class K..function a(»), such that
LA+ g oWl A T <P wl*—aCl x| (6)
then for any w(¢) € L.[ 0,o0), the output of system (5 starting from the origin satisfies

T ir-T
Ly () | 2de << 7| w0 |*de, for any T > 0
U o 0

n/

and when w(zr) =0, systern (5) 1s globally asymptotically stable at the equilibrium x=0.
Remark 1. According to [ 7, 8], the significance of the dissipation inequality (6) is
that system (5) 1s ISS with respect to w, which means that the effect of w on the system
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states is attenuated as well as the effect of w on the output™*!,

3 Main Conclusions
Lemma 2. Consider nonlinear systems described by equations of the form

Ty = X ‘|—f1 (z,x) +P1(zsx)w

Loy = Tn+ [o1(Z29X) + P (2, X)W (9

T, = U+ [,(2,x) + p, (2, X)W

where z& R™ and w& R? are viewed as the external signals,x, € R, i=1,++,n are the sys-
tem states and x=(x,,°**»x,), u€E R is the system input. Functions f,(z,x), p;(z,x),
i=1,++,n are continuous and satisfy assumptions A,;) and A;). Then, for any given num-
bers ¥,, 7., ¥; >0, there exist a positive definite quadratic function V{(x,,+***,x,) s a posi-
tive number A and a linear teedback controller

u=ax + - +a,x, (8)
such that the time derivative of V(x,,**,x,) along the trajectories of the closed-loop sys-
tem (7),(8) satisties

Vzyssz) < w47l zl2 =2« Qo P4+ D =% 12 (9
forall z€e R", w& R and r;€ER, i=1,",n.
Proof. We give the proof using backstepping. Let 6,=n"'7, and 0,=n"'7,.

With z, viewed as a virtual input, construct the Lyapunov function

V1 (x;)= é—lﬁ

By using of A,) and A;) and computing the time derivative of V, (x)along (7), we obtain
that

Vi) <zia +pli4pl x| |zl +6 ltw|{2+i—M26;1x§ <

o lwl*+o lzll" =z =% o "+

| 1
171(1?2 + UT | 4W§1'11‘1 4#232_1I1‘|—Il 73-1'1)

Choosing the virtual control law

Ly =——— (#"f__}(Mzal_] i

we obtain that

Vl(Il)gﬁit w430, | z| =l =7 *2
Suppose that at step 7, there exist a virtual controller
Tip1 = M1 + *** + M,T; (10)
a positive definite quadratic form V,(x;,+***,x;) and a positive number A, such that
Vilzyseaz) Kiody lwll?4ie & 22— P44z D=7 | o |2
(11)

With x;,, viewed as a virtual input, construct the Lyapunov function

; (41 — iy + 0 4 iz ;) )*

For notional convenience, denote f,=f,(z,x),p,=p:(2,x), i=1,+,r. Letting

Vign = Xi1 — (pxy + o + p1.x))
the time derivative of V,,, along system (7) is

. AV . oV .
V:‘+1 -':az: (I2+f1—|’P1W)—|—"' | a“;f((ﬂlxl_'_'"_l_#ixi)_’_f:’_’_ﬁiw)"—

Vf+1 (Il IR S | ) = V:‘ (Il y "°° !Ii) |
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Ui+ (JCI'+2 — My Xy — vttt BT + aV:’/aIi )T
Uiy (fimn — i 1 — 2 — e f D)+ vy (P — 1 py — = — Hip W
Thanks to assumption A, ), there exists a constant M.., >0 such that

” Pivi — o pr — 0 — 4, p; H f; Ms+1

Using the completion ot square, 1t 1s straightforward to show that

[""J’:‘-H(Peﬂ—#11—"1—*"'_’#:?:')‘”‘%31 fw | ° i3fl Vi (12)

From the fact that quadratic function x4+ x° +vi;, 1s positive definite, there exists a
positive number A, ., such that

A (x] o Fx + v§+1 ) = 2A,4, (xi + s + I?—H ) (13)

Owing to assumption A;) . there exists a positive number «;,,, such that

]f;f+1 "_#]fl — T “"_)u:fz lg K ( H ré ” ‘i_] A1 l_‘_ tee +| v "‘“l i1 t )
[t follows by the completion of square that

I 'U,+1(f;‘+j _#]fl _"‘_psz')i:“‘/\:
1. —1 2 z 1 :
TEF DA el A (L [P F x|+ a6 vl +8 2 )

£

(14)
Using (11), (12) and (14), we have
V:+l <1+ 0, fwll® 4170, Fz il 2 —A (2] 4 +ai + vin) — 7 1 -
Uil (Ith — (#IIE ‘JF *et —f”#;'l',ﬁ ) + avz'/aﬂ +Az"yz+l )+
v (foor = fr— = f O |+ fva oy —pupr — = —pp ) w| <
G+Ded ffwl?+GHDed 2 =An (et + 2l +ahp)—7 | o |+
Uit (CI:'-+2 — (#1132 + e #:‘Ifﬂ) -+ avi/fal":‘ + A v +

1 1 1 )
_21..; 1 A 6?1"‘7;+1 Uit )

Since V,; is a quadratic function, 9V,/9x; 1s a linear function. Choosing the virtual

' —1 2 1 £
(3+1)Ai+1”s+1‘01+1 | & MH'UI'H |

controller
X2 :‘ul vy _I_ "t _l_ #:‘Iz—-—l T aVl/aII “m
1 1

. sy _ | S
(I(E‘}_ 1)"6?-4—1 1*+]1 % 4 31 : 11 -} 4 5? IK’T-!-I +AI)UI+1

which is linear, we obtair: that

Vz+1 g (i+1)'81 H W \2"'” (f+1)'52 HZ“2_*fliﬂ(ﬂf%"i"”‘"xfﬂ)“*yalfl 12(16)

Repeating the above inductive argument n times, we complete the proot of Lemma 2.

(15)

Theorem 3. Consider system (1). Suppose that it satisfies assumptions A;) and A, ),
and its input unmodeled dynamics satisfies the admissible conditions B,), B;) and B;). If
there exist a C', positive definite, radially unbounded function V., (z), positive numbers S,

and 3, such that

O o
av;z [f(zul‘ﬂ )‘f-P(ZaIl )w:ll’:\: ,82 H (Wy.rl)r ” ) —191 “ Z H Z (17)

for all zE R, wE R, x, € R, then for any given Y>>0, there exists a linear feedback con-
troller

u = ulx,y***ox,) (1&)
such that
1) for every disturbance w(z) € L,[ 0,o), the output of the closed-loop system (1)~
(18) starting from the origin satisties
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T -
J |y () |2de < 7| | w(®) |?de, forall T >0
0 J 0

2) when w(t) =0, the closed-loop system is globally asymptotically stable at the equi-
librium origin.

Proof. We {irst give the prootf for r>>1.

Without loss of generality, we suppose that 8; =1.

Choose 7,=1,7.=//2,7; =37 *+1. In terms of Lemma 2 and the construction of
the Lyapunov function in the proof, there exist a linear controller

U, = a1 x) T "+ a,x,
a positive number A and a positive definite quadratic function with the form

Vr(Il yo UL, ) = Vr—l (x, v ", ) % (x, — (#1-1'1 —+ - +#r—IIr—1))2 (19)

such that

oV %
aI:(Iz —|—f1+p1W)—|— PP I a‘r:(alxl+...+arxr+fr‘|_prw>€

I Wil 4= 2l — A+ 22— 37+ 1) |2, |

(20)

Denote v,=x, — gy xy —*** —u,_, x,_;. By introducing a transformation =& — bv,,
system (1) becomes

= A, (N+bv,)+ P(z,x)+ ¢(z,x)w
z :f(z!x) p(z2, X)W

21 =22+ f1(2,x)+ py (2, x)W
: (21)

.I.Tr_,l - I, frﬁl (ZyX) Pr— (Z, X)W
T, =cM+bv))+u+ f,(2,x)+ p, (2, X)W

Yy — A

where

P(zox)=b(pr + >+ 11— p.)
$(z,x)=b(m(z, + fL)+ - +u_(z, + fro) — f)

Owing to assumptions B;) and B; ), there exists a positive definite and proper function

V.,(1)) such that

V,(<a, | bv, || 2 +a |$(z,0) + ¢z, 0Ow|? —a, | 7] ? <
a, K*v? + 2a, (| P(2,x) |4+ Nl ¢Czyxd) || ° | wil 2)—a, | n ” : <
ay (KPoE 42 || 2(z,x) [ 2)+ 2, [ ¢Czox) [| P | w2 —a [ Bl °
Due to A,), ¢(z,x) is a bounded function, so there exists a positive number M such
that | ¢(z,x) || 2<M. Due to A,), there exists a number #>0 such that
[z [<ECN 2l +] 20 [+ 4] 2, |)
Furthermore, there exists a number L>0 such that

a (K0P + 2| Pz, ) | )Lzl 4+ 2} 4+ oo +22)

et k=min —%—-A L} ,%Blf_l , (20, M) ™!} and V, () =«xV, (). We have
Vo) < B 22 4+ 2+ 2 4w * — ke, [ ) (22)
Construct the Lyapunov function
W(zaxl vy X,y M) =V, (x50 !l:r)—l_‘_/q(q)_'_ V.(z) (23)

and compute its time derivative along the solutions of system (21) with noting that 9V, /
ox,=wv,. Using (17), (20) and (22) and rearranging the terms, we obtain
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oV, dV.
aI1 (x> +f1 Pw)- —}-;; (“f+fr""prw)“f”?fr(ﬂ(fl-!—bvr)—f-u-—ur)—;-

W <

BN A e a) + wl—ka ] R 2] <

7 ]. '
3wl F =372t — LAzt 4 k) — ke )= B L]

v, (u—u, +c(n+bv,)) (24)
With the help of B;) and B;). the last term in (24) is

v, (ut+cM+bv,))—u )< v (u—u )+l v, [ ([l + [ bv, || K

0, (u— )+ T Ko} + o ¢ (ka) ok + = (ke | (23)
Substituting (25) 1n (24) gives
W3l wl? =37 — A o+ 2h) — ke |l P — B 2 ]2+
B L -~ (26)
fm(u-—ur+-d<vr$ 5 c(xag>'uj
Let
W (zox) st sa, 1) = é V: W(Zox st sx, 1)
Then, it is easy to show that linear feedback controller
u = u, —cKwv, ; ¢t (kay,) 'y, (27)
leads to

. 1
WV wl?—y :

From Lemma 1, we complete the proof tor r>1.,

7 (At 42 e [l P+ SA 217) @)

When r=1, the proof is analogous to the above by using a directly transformation

1 = (:“*bl'l (29)

4 Conclusion

We have addressed the H..control problem of a class ot nonlinear systems with input
unmodeled dynamics. State feedback controllers, which are robust to the unmodeled dy-
namics, are constructed to attain global disturbance attenuation with internal stability to
an arbitrary degree ot accuracy in the L, gain sense.
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