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Pole-Assignment Descriptor Steady-State Kalman Estimators”
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Abstract Using the modern time-series analysis method in the time domain, based on the autore-
gressive moving average ( ARMA) innovation model and white noise estimators, and in terms of
the pole-assignment principle in control theory, the pole-assignment descriptor steady-state Kal-
man estimators are presented for linear discrete-time descriptor stochastic systems. They have
globally asymptotic stability, and can forget the effect of the initial state estimates at an exponen-
tially decaying rate by assigning the poles of the estimators., They can handle the filtering, smoot-
hing and prediction problems in a unified framework. They avoid the Riccati equation and the com-
putation of the optimal initial state estimates so that reduce the computational burden. A simula-
tion example shows their effectiveness.

Key words Descriptor systems, pole-assignment, steady-state Kalman estimator, modern time-
series analysis method

1 Introduction

Descriptor systems often occur in many fields including circuit, economics, robotics,
etc, and have attracted considerable attention in recent years. The disagvantages of classi-
cal descriptor Kalman filter given by Nikoukhah et al. ' are that the solution of descriptor
Riccati equation is required, which yields a larger computational burden, and it does not
solve the smoothing problem. The descriptor Kalman estimatorst*~% proposed by the mod-
ern time-series analysis method can handle the filtering, smoothing and prediction prob-
lems in a unified framework, and avoid the Riccati equation. But their disadvantages are
that they require the optimal initial state estimates'?~*, thus increase the computational
burden. In this paper, using the modern time-series analysis method"®) and the pole assign-
ment principle in control theory, based on the ARMA innovation model and white noise
estimators, the pole assignment descriptor Kalman estimators are presented. They avoid
the Riccati equation and computation of optimal initial state estimates. Not only they have
the globally asymptotic stability, but also the effect of the initial state estimates can be
rapidly forgotten by assigning the poles of the estimators.

Consider the discrete time descriptor stochastic system

Mx(t+1) = &x () +T'w(t) (1)
y(t) = Hx(t— k) +v(2) (2)
where the state x(¢) € R", the measurement y(¢) &€ R", w(t) € R"y £=0 1s the measure-
ment delay, v(z) € R™, M, @, I and H are the constant matrices.
Assumption 1. M is a singular square matrix, that is, det(M) =0,
Assumption 2. The system is regular, that is, det(zM—®)%0, 2€ C, where C is the
complex field.

Assumption 3. The system is completely observable, that is,

"M —d7 M7
rank i = n, Yz & C and rank =" (3)
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Assumption 4. w(z) and v(z) are correlated white noises with zero mean and

Tw() - 1, . Qe ST
Ei_v(z)_[w (1) v ])= gt Qv_é‘,,j (4)

where E i1s the expectation operator, T denotes the transpose, 8, =1, 8, =0 (t#j).
The descriptor Kalman {filtering problem is to {ind the steady state Kalman estimators

x(t|t+ N) of the state x(¢) based on measurements (y(z+N),y(t+N—1),*). For N=

0, N>0 or N<0, they are called the descriptor Kalman filter, smoother or predictor, re-
spectively.

2 ARMA innovation model
From (1) and (2) we have

y(t) = HM—q '®) 'I'qg " *w() + v(t) (5)
where ¢! is the backward shift operator. Introducing the left coprime factorization
HM—qg'® 'Iy = A'Bg- (6)

where A and B are polynomial matrices having the form X=X(¢7') =X, +X,q¢7' + -+
X,,Iq_”x , X, are the coefficient matrices and », is the degree of X. We define X, =0 (>
n,), and A,=1I,,, B,%0, ¢ 1s an integer, that is, =0, >0, or +<C0.
Substituting (6) into (5) yields the ARMA innovation model
Ay (t) = Dg(t) (7)
Dg(t) = Bg™w(z) + Av(®) (&)
where D 1s a stable polynomial matrix, D,=1,,, and the innovation process g(t) € R™ is the
white noise with zero mean and variance matrix Q.. D and Q. can be obtained by using the
Gevers-Wouters algorithm'®. According to (7), the innovations g(z) can be computed re-
cursively as
g(t) = Ay(t) —D,1g(t—1) — - — D, gt —ny), t = ngyng + 1, (9)
with the initial values (g(0) ,+++,e(n,—1)).

3 Lemmas
Lemma 1%, For arbitrary integers i, j, ¢ we have that
E[w(t)sT (])] = II;=,, E[V(Z)E:T (]):I = I, El:y(t)sT (J):I - Ms—:i Q.

I = Q. ;r+r:fv 0) ?+(r\j oy I = QUG;'Tme ; STF;’Y—HrV 0) (10)
where we define that (aV 8) =max(a,b), (aAb)=minla,b). F,, G; and M, can be com-
puted recursively as

F,=-DF,_,——D,F._, +B;s F,=0 (i<0), B, =0
G, =—D1Gi—1 — 't ""DndGi—nd +A£! G, =0 (z<C0), Ai = 0 -1z )
M, =— A/ M,_| — +- —AﬂaM,;_na +D,y, M, =0 0UGU<0), D, =0G>n;) (11)
where we define B=Bg¢"""?, A=Aq """\¥,
Lemma 2%, The optimal white noise estimators are given as

wit|t+N)=L¥eg(t+N)and v(z | t+ N) = L% eg(t+ N) (12)
where LY =0(N<—(rV0)), LYx=0(N<—(zV0)), and for N=—(rV 0), we define
N N
Ly = D, Q¢ Vand L}y = > MQ7'¢"™ (13)

i=(zV 0) i=—(zV 0)
The optimal predictors y(¢t+i|z) can be computed recursively as

N A@ Dy +j ) =Det+3), j=1y,i (14)
where A(q ') denotes the polynomial matrix A(g™') which operates only for time (t+;),
and g(t+7)=0 (G>0), y(i|j)H)=y() G<j).

Lemma 3'"). Under Assumptions 2 and 3, there exists an nXm matrix K such that
dettM—qg ' (®+ KH)| = yq™" (15)
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where Y0 1s a constant.

4 Pole assignment descriptor steady state Kalman estimators
Premultiplying (2) by K, and setting t=¢+%, and combining it with (1) yield
Mx(t+1D = (@+KH)x(t) +T'w(t) —Ky(t+ k) +Kv(t+ k) (16)
which yields that x(z)={M—q¢ ' (@+KH) | "' [’w(t—1)—Ky(t+k—1)+Kv(t+E,—
1)]. By Lemma 3, we have the nonrecursive representation of x(z) as
x(t) =Rw(t+n—1)—Py(t+k+n—1)+Pvt+k+n—1) (17)
where we define the polynomial matrices R and P as
R=adjiM—qg'(®+KH)I'/y, P=adjM—q'(®@+KH) |K/y (18)
where adjA denotes the adjoint of matrix A.
According to Assumption 3,rank[ M* H']'=n. Then there exists an nXm matrix
T, such that (M~+ T, H) is nonsingular-®, Premultiplying (2) by T, ,and setting t=t+%,
and combining it with (1) yield the conventional system
x(t) =Ux(— 1) +¥y(t+k)—Tvie+ k) +Twi—1) (19)
y(t) = Hx(t — k) + v(£) (20)
where V=(M~+T,H) '®, ' '\=(M+T,H) 'T, and ¥, =(M+T,H) 'I". And it can be
proved-®! that (¥, H) is a completely observable pair.
Theorem 1. For the descriptor system (1)and (2), under Assumptions 1~4, we have
the descriptor steady state Kalman estimators as

(| t+N)=W0G—1t— 1+ N)+"yG+Ek|t—1+N) —WvG+Ek | t—1+ N)+
v,w(i—1|t—1+N)+Kye(t+ N) (21)

where the gain matrices Ky are given as

"o

n, ny,
KN — ( z Riﬂﬁ—n—l—l“}—i T Z PiMk-Fn—l"_i"NQs _I_ Z PiHﬂN—k—n+1+z)Q:1 (22)
1=0 t =10

i=0
where w(i|j), v(i|j) and y(i|j) can be computed by Lemma 2.
Proof. According to the projection property , we have

@1 t4+N)=xGlt—14+N)+Kyet+N), Ky=Elx®e' ¢+ N)IQ*" (23)
Taking the projection operation for (19) yields

x| t—1+N)=x(Gt—1|t—14+N)+"yGt+E|t—1+N)—

v+ hkit—14+N)+¥wG&—1|t—1+4+ N) (24)
Substituting (24) into (23) yields (21). Substituting (17) into (23) and applying (10)
yield (22). —

Theorem 2. It ¥ is a stable matrix, then the descriptor steady state Kalman estima-
tors (21) are globally asymptotically stable, that is, ¥(z|z+ N) are asymptotically inde-

pendent of both the initial estimates x¥(z,|#, = N) and the innovation initial values (g(0),
oe8(n,—1)).
Proof. The proof is similar to that as in [ 6 ], which is omitted. B
Theorem 3. If ¥ 1s an unstable matrix, then for the system (1) and (2) under As-
sumptions 1~4, we can suitably select an nXm matrix T, such that =¥+ T, H is sta-
ble, and the eigenvalues of ¥ can arbitrarily be assigned, so that the pole assignment de-
scriptor steady state Kalman estimators have globally asymptotic stability as

xlt+N)=wx¢t—1|t— 1+ N)H+T 3G+ kit —14+N)—T, 3G+ E—1|t— 1+ N)—
v +kt—14+N)+T9G+Eb—1t—14+N)+T.wit—1|t—1+N)+ Kye(t+ N)
(25)

Proof. Since (¥,H) is a completely observable pair, we can select T, such that ¥=
¥+ T, H is stable,and its eigenvalues can be arbitrarily assigned'™. Premultiplying (20) by
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T, ,and setting t=t¢-+ %, and taking the projection operation on it and combining it with
(21) yield (25). The globally asymptotic stability can be proved by Theorem 2.

Remark 1. Given the innovation initial values, the poles of the estimators (25) are de-
termined by the zeros of det(I,—¢q '¥)=0, 1. e., the poles of the estimators (25) are de-
termined by the eigenvalues of .

Remark 2. In order to ensure that the effect of the initial values x(¢, |z, + N) 1s rapidly
forgotten, we usually assign the eigenvalues of ¥ values close to the origin. If we assign
the eigenvalues of ¥ values close to the bound of the unit circle, then although we can

make W a stable matrix, but the effect of the initial values ¥(z, | £, + N) will be forgotten in
a longer decaying process.

Remark 3. Theorem 2 is the special case of Theorem 3, that 1s, when ¥ i1s stable, we
select T,=0. For the case that ¥ is a stable matrix but its eigenvalues are approximate to
the unit circle, we can assign new eigenvalues of ¥ by using Theorem 3, in order that the

effect of the initial values (¢, |z, +N) can be rapidly forgotten.
Theorem 4. Assuming that the spectral radius of ¥ is p, 0<{p<<1, that is, p=max(|A; |,
oo o 1A, |) where A °++,A, are different real eigenvalues of ¥ and are inside the unit circle.,

Then the effect of the initial values ¥(¢, |z, + N) of the pole assignment Kalman estimators
(25) decays to zero at the exponentially decaying rate O(p') , that is, arbitrarily taking two

sets of the initial values of (25) as (x° (¢, |2, T N);8(0) 4+ ,e(n,—1)),2=1,2, which
have the same innovation initial values, denoting the corresponding Kalman estimators

(25) as ¥V (¢|t+ N) and introducing the error
6() =x G| t+N)—x2G|t+N), 6) =16, 8] (26)

we have
0:(2) =00 ), 1=1,2,,n (27)
that is, |8;(2) | <Bp's i=1,2,,n.
Proof. Because the computation of measurement predictors and white noise estimators
only dependent on the innovation initial values, and because there are the same innovation

initial values in the two sets of initial values of (25), from (25) we have the difference e-
quation

0(t) = wé(t— 1) (28)
Denoting the n linearly independent nX 1 eigenvectors corresponding to the real eigenval-
ues A; s **9A, of ¥ as @, s@,» where @, =[ains** sam | si=1,+,n, the difference equa-
tion (28) has the general solutiont*
0(2) = qAia; + = +c.A.a, (29)
where constants ¢; can be computed from initial values §(z,) =%V (¢, |, +N)—x (¢, | £, +
N) by (29). In tact, taking t=1¢, in (29) yields linear equations

I:/liﬂ ) AT QA;Daﬂ:I[Cl s **° !CH:IT —— 5(50) (30)

Since @15 ***» @&, are linearly independent, the matrix [Aba;, " sAra, | 1s nonsingular,
Therefore, from (30) we have

I:Cl s *°° 9Cn:]T — [Aiﬂ 1 AR nlf{jan:l_la(tn) (31)
Equation (29) yields |¢;(2) \éﬁipt ,» Bi=max(|cran |,y |cham|)si=1,2,,n, that is,
(27) holds.

Remark 4. Theorem 4 gives the quantitative analysis that the effect of the initial val-

ues X(z, | £, + N) exponentially decays to zero, and the decaying rate can be controlled by
the spectral radius p of V.
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S Simulation example
Consider the descriptor stochastic system

] O 0O - 0.9 0O 0 -1
—1 0 1|x(¢t+1)=|—0.5 0.5 0 |x(t)+ |[— 1 {w(t) (32)
0 0 O — 0. 25 0 0. 25 0 _

y() =10 1 0lx() +v() (33)

where x(2) = [x: () x,(t) x3(t) ', v(¢) is correlated with w(z), v(z) =0, 5w(z) +
E(t). w(z) and E(¢) are uncorrelated Gaussian white noises with zero mean and variances

o,—1 and o =1, respectively. The problem is to find ¥(z|#).
Using Gevers-Wouters algorithm'®, the ARMA innovation model is easily obtained as
(1—0.9¢)y(t) = (1 —0.5405¢ gt (34)
where ¢ = 7. 4471, and
(1 —0.5405¢ ")e(t) = (2—0.8qg H)w(z) + (1 —0.9¢ Dv() (35)
Applying Lemma 3 yields K=[1 —0.5 07" and y=—0. 125. According to Theorem 1,
taking T,=[0.5 0.1 0.1]" we obtain

2. 15 0 —1.25 0 1 10,0265
V= |—2.5 0 2.9 |s ¥, = |1}, ¥ = 10|, K,= [0.6975 (36)
1.9 0.5 —1.5_ 0 0 10.0265_

Since ¥ has the eigenvalues A; =1. 5394, A, =—1. 4083, and A; =0. 5189, ¥ is an unstable
matrix. Here we assign poles for two cases:

Case 1. Taking A; =0. 1,4, =0. 2 and A; =0. 4, there exists T,=[0.649 0.05 —0.234]"
such that ¥ has the above eigenvalues. Then we obtain the pole assignment descriptor
steady state Kalman filter by Theorem 3 as

x| ) =G —1t—D4+"yG¢|t—1D—Tyt—1 +
Tovi—1|t—D+¥wi—1]|t—1)+ Koelt) (37)
Taking the initial values x(1|1)=[1.5 1.5 1.5]%, €(0)=0, the simulation results of
the estimators (37) are shown in Fig. 1 ~Fig. 3, where the solid lines denote x,;(#), and
the dashed lines denote z,(¢|2), 1=1,2,3.
Case 2: Taking A; =0.85,4,=0.95 and A; =0.9, there exists T,=[ —0.575 2.05 —1.853]"T
such that ¥ has the above eigenvalues. Then according to (37), taking the initial values

x(1|1)=[1.5 1.5 1.5]", g(0)=0, the simulation results of the estimators (37) are
shown in Fig. 4 ~Fig. 6, where the solid lines denote x,(¢), and the dashed lines denote

z,(tl), i1=1,2,3.

_ 2 L
—4F f/
— 6 - . !
8 ' ' —8 ' *
0 100 200 300 0 100 200 300
t/step t/step
Fig.1 x;(#) and descriptor Kalman Fig. 2 xz,(¢) and descriptor Kalman

filter z, (z]¢) (case 1) filter x,(z|¢) (case 1)
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Fig.4 x,(t) and descriptor Kalman

Fig.3 x;(¢) and descriptor Kalman
filter x, (z]¢) (case 2)

filter x3(¢]2) (case 1)

20 20 ~ —
OWWWMWWH 60F | q
— 20} 40p
—40ti 20 | 4
— 60+ 'E ; 0 ‘h‘- . PR A WAl eV
—go ¥ -~ 1 — — 20 — =
0 100 200 300 0 100 200 300
t/step t/step

Fig.5 x;(t) and descriptor Kalman Fig. 6 x;(t) and descriptor Kalman

filter z; (¢]#) (case 2) filter x; (¢|2) (case 2)

From the above simulation results we see that if the absolute values of eigenvalues of
¥ are approximate to 0, then the effect of the initial values will decay rapidly. In Fig, 1~
Fig. 3 we see that the state estimates satisfactorily track the true states after only a few
steps. Contrarily, if the absolute values of eigenvalues of ¥ are approximate to 1, then the
effect of the initial values will decay slowly with a longer decaying process. In Fig. 4 ~Fig.
6 we see that the estimate precision is not good for the first 100 steps and atter 100 steps

the estimates satisfactorily track the true states.

6 Conclusion
The unified pole assignment descriptor Kalman estimators have been presented by u-

sing the modern time-series analysis method'™. Compared to the descriptor Kalman fil-
ter-'), they avoid the Riccati equation, and can handle the filtering, smoothing and predic-
tion problems in a unified framework. Compared to the descriptor Kalman estimatorst?~*,
they avoid computing the optimal initial state estimates. Therefore, they can reduce the

computational burden. Compared to Zhang et al's resultst® , they can handle the descrip-
tor systems with correlated noises and with measurement delay, and the effect of initial

state estimates can rapidly exponentially decay to zero. Compared to Dai's state observ-
ers-1, the state observers for determinate descriptor systems have been extended to the
stochastic descriptor systems, and they can be considered as stochastic descriptor state ob-
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