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Stability Analysis on Predictive Control of Discrete-Time Systems
with Input Nonlinearity"
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Abstract For systems with input nonlinearities, a two-step control scheme is adopted. For linear
part the control law with Riccati iteration matrices satisfying certain conditions is used to get the
Lyapunov function. The stability conditions are investigated, considering the reversion errors
coming from solving nonlinear algebraic equation and desaturation computation, which give tuning
guidelines for the real systems. Simulation studies validate the results of theoretical analysis.
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1 Introduction

In process industries, many systems have input nonlinearities such as saturation, dead
time, relay cycle, etc. Moreover, chemical processes represented by Hammerstein model
in the form of “static nonlinear-+dynamic linear”, such as pH neutralization, high purity
distillation, etc. ,» can also be taken as input nonlinear systems. Generally, two-step con-
trol can be applied to this kind of systems' ™!, in which a desired intermediate variable is
firstly obtained by applying linear model and then the real control action is obtained by sol-
ving nonlinear algebraic equation group(NAEG), desaturation, etc. The advantage of two-
step control is that the controller design is still within the scope of linear systems, which is
much simpler than nonlinear control incorporating the nonlinearities into system equation
or objective function,

For an input nonlinear control system designed by two-step scheme, if the real control
input recurs desired intermediate variable exactly through static nonlinearities, the stabili-
ty of the system could be guaranteed by properly designing the linear system. However, it
is difficult to meet this perfect condition in real applications. For the Hammerstein sys-
tem, solving NAEG will inevitably have error, and for the input saturated system, the re-
stricted input is often largely different from the desired one. In these cases, the stability a-
nalysis of two-step controller becomes very difficult.

It is the aim of this paper to study the stability property of two step model predictive
control systems with input nonlinearities (TSMPC), including Hammerstein nonlinearity,
input saturation, etc. Applying Lyapunov's stability theory, we obtain some stability con-
clusions of this kind of systems. Section 2 describes the main 1dea of TSMPC. Section 3
gives the stability conditions. Section 4 illustrates the stability tuning of TSMPC and Sec-
tion 5 gives a simulation example.

2 The description of TSMPC
Consider the following discrete-time system with input nonlinearity,

L i ZAzk—l—Bx“ Y :CZ.“ X ; :‘P(uk) (1)
where z&ER" ,x& R” ,y&E R? ,u& R™ are state, intermediate variable, output and input, re-
spectively. @ represents the relationship between input and the intermediate variable satis-
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fying ¢(0)=0. (A,B) is assumed stabilizable. We also assume that ¢ includes Hammer-
stein static nonlinearity f and input saturation constraints sat; =1, ,m.

For the above nonlinear system, the structure of general two-step controller is shown
in Fig. 1. In the following we describe the concrete realization of TSMPC.,
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Fig.1 The structure of controller and system cascade form

In the first step, we only consider the linear system z,,, =Az,+Bx,,y,=Cz, and de-

fine the objective function as
N—1

J(N,x,) = Z [Zg-l-jQij + xgﬂkaﬁ :H" ngrNQNZk—l—N (2)

P
where Q=Q"' =0 and R>0 are weighting matrices of the state and the intermediate varia-

ble; Qy=0 is the terminal state weighting matrix and Q=%Qy 1s the usual case in predictive
control, The following Riccati iteration 1s adopted:
P, = Q+ATP, A—ATP,,B(R+B'P,,B)"BTP,,A, j<N, Py=Qy (3
to obtain the linear control law:
x, =— (R+B'"P,B)'B'P, Az, (4)
Note that x, in (4) may be unable to be implemented by real control action, so we denote
It as
x; = Kz, =— (R+ B'P,B) 'B'P, Az, (5)
In the second step, we solve xy — f(&,) =0 to obtain #, =¢@(x; ), then obtain u, by desatu-
ration, #, =sat{u; >, which is formalized as u, =g (x;) as shown in Fig. 1. Note that for

one x; several &, as well as u, may be obtained. However, adding extra conditions (such as
choosing u, to be the closest to u,—; , choosing u, with smallest amplitude, etc. ) we can ob-
tain a most suitable u,. When u, has been implemented, the corresponding x, is denoted as
x,= f (sat{u,}) = f (sat{g(xg)}) = (P g)(xy) =h(xy). Then, the control law of
TSMPC represented by the intermediate variable becomes
x, = h(xt)=h(— (R+B"P,B)'B'P,Az,) (6)

With (6) we obtain the closed-loop system

2,0, = Az, + Bx, = (A— B(R+B'P,B)'B'P,A)z, + B(h(xy) — x%) (7)
The closed-loop structure of TSMPC i1s shown in Fig. 2.
, When h=1=11,1,---17]", the nonlinear

P ] 2,, = Az, } Bx, _yi item in (7) dlsappe‘ars. .However, generatlly
l_ y,=Cz, h=1 can not hold, since in the actual solution
of TSMPC, h may incorporate;

1) the solution error of NAEG;

Fig. 2 The closed-loop structure of TSMPC i1) the desaturation action that makes xy #x,.
Moreover, for a real system h may also in-

Zp

corporate;.
111) the modeling error of the Hammerstein nonlinearity;
iv) the uncertainty in the actuator and the execution error-*’.
Hence, in real applications hs41 (. e., x55%x,) will be always true. It is just this rea-
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son that brings the complexity of the stability analysis for TSMPC. In the next chapter we
adopt Lyapunov’s theory to analyze the stability of TSMPC.

3 Stability analysis of TSMPC
In the following, we choose R=AI for convenience.

Theorem 1. For system represented by (1), TSMPC 1s adopted. Then under the fol-
lowing two conditions the closed-loop system is exponentially stable:

1) The control parameters {Qn,QsA, N} satisty Q>P,— P,
i1) The nonlinearity k satislies
— As ' [2h(s) — s ]+ (h(s) —s)'B'"P,B(h(s) —s)< 0 (8)
Proof. Define Lyapunov function as V (z;) =2z;P;z,. Then
V(zp )—V(z,) =
2z, [A—BQI+B'P,B)"'B'"PLAT"P,|A—BQI+B'P,B)'B'"P,A )z, —z; Pz, +
2A2;A"P,B(AI +B"P,B) " (h(xy) — xi)+ (h(xy) — xi) ' B'P,B(h(xy) —x;y)=
2| —Q+P,— P, —A"P,BQI +B'"P,B)'A(Al +B'"P,B)"'B"P,Alz, +
2A2; A" PyB(AI +B"P,B)™ (h(x;) —x;)+ (h(xy) —x¢) ' B'P,B(h(x;) — x;) =
2, (—Q+ Py — Py)z, —A(xy) ' xi — 2A(xz) " (h(xy) — xi)
(h(x;) —x;) ' B'PiB(h(xg) —x;)=2, (— Q-+ Py — Py )z, —A(xg) " (Zh(x3) — xi )+
(h(xy) —x;)'B"P,B(h(x;) — xi)
Apparently the system will be stable under the conditions 1) ~11). Moreover, since Q> P,
— P,y V(2p31) — V(2D <— 2 (Q— Py +Py) ||z, [| <0, ¥V 2,740 and “exponentially” holds.

Theorem 1 embodies the characteristic of two-step control, where condition 1) is a
stability requirement on the linear control law while condition 11) on the nonlinearity h.
From the proof of Theorem 1 we can easily know that condition 1) i1s a sufficient stability
condition of the linear control law and can be satisfied by properly choosing the control pa-
rameters. Moreover, if there is not reversion error, then h(s) =5 and (8) becomes —As's
<0 which will be always true, and by Theorem 1 we obtain the stability condition for line-
ar control law,

With condition i) satisfied, we can further investigate the stability requirement on h
under condition 11). To do this we assume

lh() || =6 |s]l, |r(s) —s|<<|b—1]|s] (9)
where 5>>0 and b, >>0 are scalars; ||v| stands for 2—norm of vector v; |h(s)| =8 ||s]|
mainly stands for the requirement on desaturation level while |h(s) —s|<C|6—1]| |s|| em-

bodies the restriction on the total reversion error. Now we can obtain the following re-
quirement on the reversion error,

Corollary 1. For system represented by (1), assume that the control law (4) satisties
Q>P,—P,. Then the control law (6) will exponentially stabilize the system if 4,56, in (9)
satisfy the following requirement.

— A6 — (b= 1) T4 (b — 1) %6 (BTP,B)< 0 (10)

Proof. Applying (9) we make following deductions:

— s [2h(s) —s |+ (h(s) —s)'B'P,B(h(s) —s)=
— A () "h(s) + (h(s) —s)" (Al +B'P,B) (h(s) — s)<C
— bists+ (h(s) —s)' (AT +B*"P,B) (h(s) —s)<C
—AbisTs+ (b—1)%0mu (Al + B'P,B)s's =
— isTs +Ab—1)ists+ (b— 1), (B'P,B)s's =
—AbBi — (b—1)0s"'s+ (b —1)0mx (B'P,B)s's
Hence, if condition (10) holds, (8) can be deduced from (9). Therefore, the corollary
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holds. L

In real applications, f is often chosen as totally decoupled form. This simplifies not
only the NAEG solving but also f identifying. In the case f is totally decoupled, we can
assurme

55,13.? ghi(si)sfébi,zﬁa 1 = 19'“57?1 (11)
where b; ,=b;, >0 are scalars. Apparently (11) has clearer meaning than (9).
Since h;(s;) has the same sign with s;, |A;(s;) —s. | = |h; () |[—|s; | |<max{|b,,— 1],

65,2_1‘} ’Sil L3t51—m1n{bl1rbz1a abm1}ﬂﬂdlb H"_mﬂX{lbn_H albm1“1
by,— 1|,y |b,.—1!}; then (9) can be deduced from (11), so Corollary 1 will still hold
for (11). Moreover, we can obtain the following conclusion.

Corollary 2. For system represented by (1), assume that f has totally decoupled form
and the control law (4) satisfies Q> P,— P,. Then the control law (6) will exponentially
stabilize the system if the following condition holds:

— A2 — D)+ (b—1)%6,. (BTP,B)< 0 (12)
Proof. By using (11), it is easy to conclude that s;[ h;(s;) —s; | =5, 615, —s; |, i=1,
“«,m. Since

— A [2h(s) —s ]+ (h(s) —s)'B'P,B(h(s) —s)=
—As's — 2As ' [h(s) — s+ (h(s) —s)"B"P,B(h(s) —s)<<

—asTs — 21, (biy — 1)s¢ + (h(s) —s)TBTP,B(h(s) — )<
=1

— AsTs— 22 (b — Dsts+ (b— 1)6,.,(B'P,B)s's =
—A(26; —1)s's+ (b—1)°6mx (B'P,B)s’s
if condition (12) is satisfied, then (11) satisfies (8). Therefore, the corollary holds.
Remark 1. If f=1, that is, if there is only input saturation nonlinearity, then b, =1,

(b—1)*=(b,—1)%, and both conditions (10) and (12) will have the form —A (24, —1) +
(bl—l)zgmax(BTPIB)gO-

4 Stability tuning of TSMPC
4.1 Evaluating the bounds of k for a real system

According to (10) and (12), we can give the tuning guideline for TSMPC, that is, if
the controlled system is not stable yet, we can tune Qn ,Q,A and N to restabilize it. To do
this we should first determine 6, and {#—1]|. In the following we illustrate how to evalu-
ate b, and {6— 1] for a single input system. Denote

; -
U, min 9 U g us,min

sal {u} — 9 a? Us, min "--<-... i}f é U, max (13)

Usmax s U 2= U man
Assume that;

A) The solution error of "= f (&) is restricted to 6 (2" )* < f * o(2h) 2" <<b (2)?
where 6$>0 and 6>>0 are constants;

B) The design of TSMPC satisfies xp, <<a"<<xh. and "= f(#) always has real-val-
ued solution;

C) Let &, min=f(ttemin) aNd Ly max = f(U,max) 3 then Toin Ty, min <0 and 0< Xy, g S Lax 3
D) If o(x")<<u, pmins then x"<<z, s and 1f o( ") = max » then " =2, pux.

Denote b, =min{ &, min/ Trin » Ls.max/ Tmax ;. 1t 18 easy to conclude that
h(xt) = foesat « glat) = f » sat » go(.:rL) =
(fQugmin) s @(x") < U, min (T, min 5 o(x") < Uy, min
< fGO(IL) ’ Us,min = GO(IL) K Usymax = < fSO(-IL) » Usmin S GO(IL) L Us,max
S Ugmax) s @) 2= U, mas | L5 max 3 (L") = ty,max

(14)




No. 6 DING Bao-Cang et al. ; Stability Analysis on Predictive Control of Discrete-Time *+- 831

Evaluate the bounds of the three cases in (14) we obtain

rbs (xL )2 g If,minxL g (-:Z_T“L )2 » GD(IL) g Us, min
(") < fo(aHxt <o), tymin < (2") < Uy (15)
~~fys (IL )2 é xs,ma}r;xL g (xL )2 ’ q-?(xL) ; &5, max

Integrating (14) and (15) we obtain
min{b,,b) (x")* < h(aHxt < max{1l,b) (z")? (16)
Hence, by =min{b,,b}, b,=max{1l, b} and |6—1| =max{|b;—1]|,]b,—1|}

Note that the above assumptions (A)~(B) are fundamental conditions for evaluating
the bounds of h, while (C) ~ (D) restrict our discussion to concrete nonlinearity but with-
out loss of generality, In other cases, the bounds of kB can be obtained similarly. In real
applications, the bounds of h can be evaluated based on the concrete situations.

4.2 Remarks on parameter tuning for real system

Denote (10) and (12) as

Omex (B P1B)Y /A< [6 — (b— 1) ]/ (56— 1)° (17)
and
Omax (B ' P1B)/A < (26, —1)/(b—1)° (18)
Unify (17) ~(18) as
Omex (B P1B) /A < 8(b,01) (19)

Apparently, reducing the solution error to increase § (b,5, ) will be advantageous for stabi-
lization. But the effect of this way is limited. According to (19) we can give the following
control parameter tuning guideline.

Stepl. If the system is stable, go to step 5.

Step2. Evaluate §(&,6,). Since b; may change with A,Qn,Q and N, §(b,56,) should
be reevaluated after each tuning of {A,Qn,Q,N}.

Step3d. Check if condition (19) is satisfied. If it isn’t, tune A to satisfy it.

Step4. Check if Q>P,— P,. If it is, go to step5, else tune {Qy,Qs N} to satisfy it
and go to step2. If (19) and Q> P, — P, can not be satisfied by repeated tunings, (19)
needs only to be satisfied as much as possible.

Step5. Check it the system designing has been satisfactory. If it is, stop tuning, else
change Qun,Q, N and go to step2.

Take single input system with only symmetric in-
put saturation constraint as an example. Fig. 3 is the
curve of h (x"). Now (19) becomes B' P, B/A <
(26— 1)/ (by—1)° for which the necessary condition
i1s by >1/2. Since xﬁlax:ngfox‘xi‘ L, if 5, <<1/2, we can

h(IL)A h:bz

increase A to decrease xy and consequently decrease

zt  to make b, >1/2.
Regarding the above parameter tuning guideline,  Fig.3 The sketch map shows the

. . ! : ‘
we can give the following conclusion to show that saturation's restriction on b,

TSMPC 1s tunable whenever A is stable.

Theorem 2. For system (1) with stable A, assume that §(4,56,) >0 if there 1sn’t input
saturation constraint, Then, by tuning {Qx,QsA, N}, all the conditions in Corollary 1 (or
Corollary 2) can be satistied.

Proof. Take Corollary 2 as an example. Corollary 1 will be analogous. At first, if sat-
uration constraint is not considered, then determining & (b,6,) is independent of control
parameters, When there 1s saturation constraint, consider the following two cases:

Case A:As A=21,,6; >0. 5. Always take Qyv=Q+A"QvA —A"QxB L I+B'QyB) ™'
BTQunA. This is equivalent to infinite horizon control®, so P,— P, =0. Further take Q>
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0, then Q> P, — P,. Moreover, since A is stable, P; will be bounded for any A< oo,
Hence, there exists sufficient large A, such that whenever A=A, =Aos A (26, — 1) = (b—1)"
o... (B*P;B) and all the conditions in Corollary 2 are satisfied.

Case B: As A=A, b:<80.5. Since §(b.,b,) >0 1f there 1sn’t saturation constraint, b,
0. 5 1s only due to the heavy constraints on control actions by saturation. According to e-
quation (5) and the reason stated in Case A we can conclude; for any arbitrary large | z: | »

there is a sufficiently large A, , such that whenever A=A, =1, , u; doesn’t violate saturation
constraint, that is, take A=A, then b, >0. 5.
In a word, if A=A, doesn’t satisfy the conditions in Corollary 2, then choosing A=
max{A; sA; ; and suitable {Qun,Q,N 'may satisly it. Therefore, the theorem holds.
The concrete design procedure is referred to the following simulation example.

S Simuiation example
The system adopted i1s open-loop unstable, where

-1.2  0.34 0.12 1 - -1 2 -

1 % 1 0. 34 0.23 0.89 . rl 0o 0 o-

A= 0.23 0.23 2  0.34]|° B = 1 1 andc__o 1 0 0
0.3 0.3 0.4 1 0.3 1.2._

It is easy to know that the linear system is controllable and observable, The Hammerstein
nonlinearity is described by

(0.04489°— 0. 25120°+ 1. 28020, |G| 2

0.99220, |6]>2

and f, (#) =4. The saturation constraints are — 1<wy; <1 and — 1w, << 1. sat; {0 =sign{d} *
min{1,|4|},i=1,2.

Adopt TSMPC proposed in this paper. The initial state is 2, =[0. 55, —0. 6,0. 55,
—0. 6 ]. Tune the system by applying the guideline Stepl ~Step5 given above. In the sim-
ulation, the linear part always satisfies condition i) in Theorem 1. And since u, has never
saturated in the simulation, in the following we concentrate on the computation of u;.

Case a. Hammerstein nonlinearity is not considered in computation of u; ,that is,g, =
sat;. The parameters are chosen as N=4, 1=0. 005, Q=C'C, Qv=0. 11, +Q+A"QNA
—A'QNB (A1, +B'QxB) 'B'QyA where I, (I,) is second-order (fourth-order) identity
matrix. This choice of Qu is equivalent to quasi-infinite horizon control'®'.

Case b. Consider Hammerstein nonlinearity, that is,the formula used to calculate «; is
sat; {— 0. 0488 (x1)° +0.2674 (x7)* + 0.7075x7 } » ]x{‘ ] < 2
sat1{0.9963xF},  |zk|> 2
Other parameters are chosen the same as Case a.

Case ¢. Same as Case b except that A=20.

The simulation results are shown in Fig. 4, where (a),(b),(c¢) correspond to the a-
bove three cases, and 1, 2 to system output and input respectively. Solid and dotted lines
mean two output (input) variables. Moreover, to illustrate whether all the conditions in
Theorem 1 are satisfied, Fig. 4(a;), (b;) and (c;) protract ¢, = —A(x;)' (2x,—x;) +
(x,—x;) B'P,B(x,—x;), named as stability condition testing curves. That is, when ¢,
<0, the condition 11) in Theorem 1 is satisfied at time &.

For Case a, according to the stability condition testing curve we know that the condi-
tion 11) in Theorem 1 is not satisfied. The simulation results Fig. 4(a;) and (a;) also show
that the system is unstable. For Case b, A; does not satisfy the condition 11) in Theorem 1.
The system i1s stable but is not of good quality. And for Case ¢, the conditions in Theorem
1 are always satisfied. The system is stable and the control quality is better than in (b).
The simulation results above illustrate the conclusions in Theorem 1.

X, — 5‘61('“1) =

U, — g1(1‘§‘)=
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Fig.4 Simulation results, where the abscissa 1s the sample time

(a,)~ (a;) A=0. 005,not considering Hammerstein nonlinearity; (b;)~(b,) A=0. 005, considering Ham-
merstein nonlinearity; (c,)~(c;) A=20, considering Hammerstein nonlinearity

6 Conclusion

This paper studies a two-step predictive controller for systems with input nonlineari-
ties, including Hammerstein nonlinearity, saturation constraint and static uncertainty.
Some stability conclusions are obtained. Most of the existing stable predictive controllers
dealing with real constraints add extra artificial constraints and discuss the feasibility prob-
lem after having guaranteed the stability'"'®!. Deducing the stability property of TSMPC
for systems with constraints and/or input nonlinearities, on the other hand, starts from
the feasible linear control law, and its main problem is to investigate the domain of attrac-
tion of this kind of systems. The fact that the latter does not add artificial constraints is a
main characteristic of the studies in this paper.

Deducing the domain of attraction based-on (8) needs further investigation. Moreo-
ver, 1SMPC with state observer (1. e., output feedback TSMPC), robustness of TSMPC
for the linear part with uncertainties, etc. , all deserve further investigation. The results in
this paper can serve as a basis for these future studies.

References

1  Fruzzetti K P, Palazoglu A, Mcdonald K A. Nonlinear model predictive control using Hammerstein models, [ournal
of Process Control, 1997, 7(1): 31~41



834 ACTA AUTOMATICA SINICA Vol. 29

2  Zhu Q M, Warwich K, Douce J [.. Adaptive general predictive controller for nonlinear systems, Proceedings of the
Institute of Electrical Engineering , Part D, 1991, 138(1),; 33~40

3 Zhu X F,Seborg D E. Nonlinear predictive control based on Hammerstein models. Control Theory and Application,
1994, 11(6) . 564~575

4 De Nicolao G, Magni L, Scattolini R, On the robustness of receding-horizon control with terminal constraints, IEEFE
Transactions on Automatic Control, 1996, 41(3); 451~453

5 DeDonal] A, Goodwin G C. Elucidation of the state-space regions wherein model predictive control and anti-windup
strategies achieve identical control policies. In: Proceedings of American Control Conference, Chicago, lllinois, 2000,
1924~1928

6 Kwon W H, Byun D G. Receding horizon tracking control as a predictive control and its stability properties. Interna-
tional Journal of Control, 1989, 50(5): 1807~1824

7 Bloemen H H]J, Van de Boom T J J, Verbruggen H B. Model-based predictive control for Hammerstein-Wiener sys-
tems. International Journal of Control, 2001, 74(5).: 482~495

8 XiY G, Geng X J, Chen H, Recent advances in research on predictive control performance, Control Theory and Ap-
plication, 2000, 17(4) :4693~475 (in Chinese)

DING Bao-Cang Received his master degree from the University of Petroleum in China in 2000. Now
he is a Ph, D. candidate at Shanghai Jiaotong University, His research interests include chemical process
control and predictive control.

XI Yu-Geng Received his Ph. D. degree from Technical University of Munich in 1984. Now he is a
professor at Shanghai Jiaotong University. His research interests include predictive control, contral of large
scale and complex system, and system and technology of intelligent robot,

LI Shao-Yuan Received his Ph. D. degree from Nankai University. Now he is a professor at Shanghai
Jiaotong University, His research interests include fuzzy control and predictive control.

REBANELZENSRETRREMAUEFNRESESH
TER Y ?ﬁb‘fé

(FEZEKXFEINCHIES LE 200030)
(E-mail; dbc309011@ mail. sjtu. edu. cn)

| 2l

M OB MAAERARKENRGE, REWE AT E IR XS Riccati IAVE
WE—REAGHEREUES Lyspunov REL.HMB A T HFEFEERBRE(RHFLKETE
REREMBENBELEDON AL EERAERTRERENZG SR TEHRASTARNER
HEGESTEEATER TG R,

X WmAERME,BEE, R E B, Riccati (L, B EY
FES2E TP273

(R



