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The Design and Stability Analysis of an Adaptive System
Based on Linear T-S Fuzzy System"
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Abstract An adaptive fuzzy controller of a class of affine nonlinear systems is presented. The ap-
proximators using linear T-S fuzzy logic system (FLS) are adopted to estimate the unknown func-
tions and the tunable parameters are the coefficients of the consequent rules. Because of better es-
timating performance of linear T-S FLS, we can achieve a smaller tracking error than using Mam-
dani FLLS. The closed-loop system can get global stability by using Lyapunov synthesis approach in
the sense that all the signals involved are uniformly bounded. Simulation of inverted pendulum
tracking is carried out to verily the design.
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1 Introduction
The application of fuzzy theory to control problems has been the focus of numerous

1) The motivation is that the fuzzy set theory provides an alternative to the tradi-

studies
tional modeling and design of control systems, where system knowledge and dynamic mod-
els are uncertain and time varying in the traditional sense. Recently, some researches have
been directed at the use of the Lyapunov synthesis approach to construct stable adaptive

12~5]  Most of the parameterized fuzzy approximators are expressed as a
[2~6])

fuzzy controllers
series of radial basis function (RBF) expansion

dani FLS®Z~41,

However, | 7] has proved that T-S fuzzy systems with linear rule consequences are u-

, and most of them are based on Mam-

niversal approximators and are more capable of approximating functions than Mamdani
FLS. So in this paper we will present a class of fuzzy approximators using T-S FLS of line-
ar rule consequences. The tunable parameters are the coelficients of consequent rules. In
order to achieve global stability, Lyapunov synthests approach 1s used. Some tactics are a-

dopted to guarantee g >0 1n part 4 and part 5.

2 Control objective
Consider the nth-order nonlinear systems of the form:

2" = fla Ly x" V) gla, Ly P Du, y=x (1)
where f and g are unknown continuous functions. x=(x;,**,x,) =(x,*, 2" ") ER"
1s the state vector of the system, which 1s assumed to be available for measurement. For
(1) to be controllable, we require that g(x) 0 for x in certain controllability region U, &
R". Since g(x) 1s continuous, we can assume that g(x) >0 for x&U,. The control objective is.

1) The closed-loop system must be globally stable and robust in the sense that all var-
iables, x(2),0(2),and u(x|0)are bounded, i.e., |x()|<CM,<oo, |0 << M,<co,
lu(x @ |<<M,<co for all t2=0, where M, ,M,,M, are design parameters.

2) The tracking error e=y,, —y should be as small as possible under the constraints in 1).
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3 Description of linear T-S fuzzy systems
Because f(x) and g(x) are unknown, T-S fuzzy systems are used to approximate
them.

Assume that the fuzzy rule bases of f(x) consist of a collection of fuzzy IF THEN
rules, R%:IF (z, is Aj,and, " ,and x, is A.) then F(x)=al+ alz, (=1, ym).

Assumption 1. Suppose the fuzzy sets satisfy when A;=1 ,ZAﬁ-<<l , which means:
7
if we choose triangle membership function, then the fuzzy sets are normal and com-
plete; and
if we choose Gaussian membership function, it satisfy that z! — z! >>¢, where x|,z
are the centers and ¢ 1s the variance of the functions.
Consider a subset of the {fuzzy system with product inference, Gaussian membership

and the center-average defuzzifier. Such a fuzzy system can be expressed as the following:
o

St s STl ool (o %)
f(x l Bf) = mi=1ﬂ = _} 2Ji
A, T X
;Hexp(*( o' ) )

with 8y=(ag,*sal) ERVY, X=[1,21 sz, ]"

L T ff
CXPl— z
1 g;
1

= > eH(x)0'X = £(x)0,X
=1

EJ(JC) — mi: ” ; !
Y ST SRR
;H“p(“( ;! ) )
E(x) = (& (x),,"(x)) € R ¢, =1[0},-,087" ] &€ R"*V (2)

g(x)can be expressed similarly.

4 Adaptive controller

Assumption 2. We can determine functions f“(x) and g;(x) such that | f(x) | <f“(x)
and g,(x)<g(x) for x&U,, where f*“(x)<{co, and g,(x)>0.

Let e=(e,é ,+++,e'" ") and k= (k,,***,k;) € R" be such that all roots of the polyno-
mial A(s) =s"+k,s" '+--+k, are in the open left-half plane. Since we can get the error e-
quation

é =Ae+b[(f—H+(E—u.]

0 9
0 O : :
with A= | : : b, = 0
: : )
—k, v eve e — k| -1
Since | SI—A, | =s"+k, s" '+ +k, is stable, there must exist a unique positive definite .
symmetric nXn matrix P which satisfies the Lyapunov equation AP +PA.= —Q, where

Q 1s an arbitrary nXn positive definite matrix.

1
g(x|0,)

V.2
usz(-_v—) sgn(e"Pb.) [ |l u. | ; (f(x)+ |y |+ | k"e|)] with p = 1,2,3,0r4  (3)
{

[“}(x 0, + v’ +k'e],

We choose the control law u=wu, +u,, where u, =

The adaptive law of the tunable parameters is.

(0T =—TI%e"Pb.' (X)X, (0T =—TI'e™ Pb.&' (x)Xu. (4)
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The analysis of stability will be developed in the next part.

5 Stability Analysis
Define 87 =arg mingfeﬂf[sgp | f(x 0,)— f(x)]]
0, =arg minegeng [Sélp I g(x ‘95) —g(x) I ]
where 2, and (2, are constraint sets for 0, and 0,, respectively, specitied by the designer.
We need 0, ={0%: |0, | <M, }and 2, ={6":] 6. | <M, ,E(x)0,X>¢e), where M, M, ,¢
are positive constraints specified by the designer.
We can use the following tactics to guarantee g>e.

Assume for x; € (2; there exists a membership function including point(0,£ (0)) and
the set is {27 accordingly. Suppose the width of this set 1s c.

Let b5>>2e. When z, €, , let |07 | <~

nc’
When z; Eﬂf,:i and in this set z;<{0, let bi<—e¢.
When zx, E.Qiz_ and in this set x; >0, let b >«¢.

Suppose & is the number of z; €2 ; then we always have

bo + b1xy + +++ + bz, = by + bix; + ' + bjx; = by | — | bix | — - — | bjx] | =
h
b | =Ll |+ 5|1 =2e—cohe £ = (2= L) >
We can get gzzm:&“(x)(bé —+ b; x1+---+bixn)>§€(1¢)e=e, SO g ¢,
Define the miniglllm approximation error as follft;;lrs:
w=f(x|0;)—fx)+(g(x]|0;)—g(x)Nu, (5)
Suppose ¢, =0, —@'7 € R>*"D | pl =gl —gi* € R=FD
Let
1

V_

TP+ D8 X (DT EDTH D4 X (T
=1 =1

V =— %eTQe + e"Pb.w —e"Pb.g(x)u, +e"Pb.[ > &' (X)X + (EE‘(x)?ngX)uc] T
=1 =1
ST EDT A DD T GDT =— —e"Qe — g(x)e Pb.u, + €' Phw.
=1 =1

Applying u, as (3), we can prove just as in [ 4 |
V<{— %ETQe + €T Pb .

Remark. If »=0, i. e., the searching spaces for f and # are so big that f and g are in-
cluded in them, then we have V<C0. Because the fuzzy systems are universal approxima-
tors, we can hope that w should be small, if not equal to zero, provided that we use sutti-

ciently complex f and 2.
To guarantee 8% € 2, and §4 € (2, , we use parameter projection algorithm as stated in [ 8.
Besides that, in order to guarantee g>g, we should present such tactics:
When z; € 2; and in this set 2;<70, if &= —e,
bt =— e Pb. ' (x)xu. when e"Pb.£'(x)u. <0
bt = 0 when e'Pb.t'(x)u. =0
When z; €. and in this set z,>>0, if bi=¢,
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bt =— . e"Pb &' (x)xu. when e Pb.& (x)u, <0
b = ( when e'Pb.&' (x)u, = 0.

When z; 6.(2;:_ and if | 6! "_:C
b: — r;-eTPbcE"(x)Iqu when eTPbcE"(x)u,: > ()
b: = 0 when e"Pb & (x)u, <0

when b =2¢,
by
b

— e Pb £ (x)u, when e'Pb.& (x)u. < 0
0 when e Pb.& (x)u, =0 (6)

Theorem .
D k] <M,, |oL]<<M,

Y7 . 1/2
2) | x() | <] ym | (iv) , where A, is the minimum eigenvalue of P

5 . L

)Y + 114

5

L

3) |u\é§(ﬂ(x)+ @ |+ |kTel ) -

161 (2)]

t ¢

1) j\ e(2) |2 de<<a-tb j(mu) 24y

Q 0

m(\ymH(

f —>00

5) I w€ L,, that is, ﬂw(r) | 2d7 <<oo, then lim |e(2) | =0

The proof of this theorem is similar to that of [2] and [4], here we omit it.
Remark. In [6], it is assumed that we can find such constraints of the tunable param-

eters of g that in these constraints g will always be positive. Projection algorithm is applied
to guarantee that the parameters are within the constraints., However, since the parame-
ters are relative to the states of systems, it is very difficult to determine the bounds. In

this papéer, we adopt the above tactics in the adapting process to guarantee g0 and it can
be easily carried out in practice.

7 Simulation

In this section, we use our adaptive fuzzy controllers to control the inverted pendulum
to track a sine wave trajectory. Asin [ 9], the dynamic equations of the inverted pendulum
system are;

1:?1 -— Xy
. mlxscosx; sinx; COSI;
gsinx; —
. m, + m | m, +—m
Ty = > | ——U (7)
Z(3 7COS xl) Z(S mMCOS .:::1)
4 m, +m 4 m, +m

where g=9. 8m/s* ,m. = 1kg,m=0. 1kg and /=0. 5m. We choose the reference signal vy, (¢) =
é%sin(t) in the following simulation.
| f(xy 9x,) | << 15.7840.0366x% = f“(xy22).
If we require | x| é%, gz yx2) | =1, 12=g,(x1 y25)
Suppose V=0. 267, M;=16,M,=1.6 and ¢e=0. 7. The absolute error of it is:
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‘s £

o

However, if we use the controllers with Mamdani fuzzy system as in | 2] and the same ini-

tial conditions as the above controllers, then the absolute error will be
4
f

r'.-

IAEl1 = | |2y — z, | dt = 0. 0831 and IAEZ—-—-J‘:L‘Z Zq|dt = 0.1108

W
t

From Fig. 1, Fig. 2 and the absolute error, we can see that the controllers using linear T-S
fuzzy system have better approximating property than the ones using Mamdani fuzzy system.
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Fig. 1 the state x, (solid line) in this paper , the state x, (dotted line) in [ 2] and its desired value
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Vo (2) = g() sin(¢) (dashed line) for initial condition £ (0) = (
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Fig. 2 the state x, (solid line) in this paper, the state x,(dotted line) in [ 2] and its desired value

Y (£) = gg cos(t) (dashed line) for initial condition £(0) = ( gg ,0)

8 Conclusion

In this paper, we have developed an adaptive fuzzy controller to provide asymptotic
tracking to a reference signal for a class of affine nonlinear systems. We can achieve a bet-
ter tracking precision since the approximators we use to approximate the unknown func-
tions of the system are constructed on the basis of linear T-S FLS., The global stability ot
the resulting closed-loop systems is guaranteed in the sense that all signals involved are u-
niformly bounded. Simulation of the inverted pendulum demonstrates the property of this
controller.
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