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New Approach to Robust L,-L ., Filter Design
for Uncertain Continuous-Time Systems”’
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Abstract With the help of Projection Lemma, a new L,- L performance criterion is derived,
which exhibits a kind of decoupling between Lyapunov matrix and system matrices. This kind of
decoupling is enabled by introduction of an additional slack variable and enables us to obtain a pa-
rameter-dependent Lyapunov function for polytopic uncertain systems, Upon the proposed per-
formance condition and by means of linear matrix inequality technigue, both full-order and re-
duced-order robust L,-L .. filtering problems are solved in a unified tramework, The proposed ap-
proach can be further extended to deal with filtering problems with pole constraint. Compared
with earlier result in the quadratic framework, our approach turns out to be less conservative.
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1 Introduction

The filtering problem for uncertain systems has received much attention in recent
years-'"*!. For systems with parametric uncertainties, the control and filtering problems
are mainly solved in the quadratic framework, which entails a fixed Lyapunov function for
all admissible uncertain parameters. The quadratic stability, however, has been generally
regarded as conservative and many researchers are intrigued to develop multiple or parame-
ter-dependent Lyapunov functions™*.,

The main purpose of the present paper is to apply the idea of parameter-dependent
Lyapunov stability*") to the L,-L .. filtering problem for continuous-time systems with poly-
topic uncertainties, which has been solved in | 6 | through quadratic stability approach.
With the help of Projection Lemma, we first propose a new L;-L .. performance condition.
This new criterion exhibits a kind of decoupling between Lyapunov matrix and system ma-
trices, which is enabled by introduction of an additional slack variable and enables us to
obtain a parameter-dependent Lyapunov function for polytopic uncertain systems. Upon
the proposed performance condition and by means of linear matrix inequality technique,
both full-order and reduced-order robust L,- L., filtering problems are solved in a unified
framework. The proposed approach can be further extended to deal with filtering problems
with pole constraint. Compared with earlier results in the gquadratic framework, our ap-

proach turns out to be less conservative.

2 Problem formulation
Consider the following uncertain continuous-time system:

X() = Ax() +Bo (), y(t) =Cx()+Dw(t), z(t) = Lx(t) (1)
where x(¢) € R" is the state vector, @(z) € R? is the disturbance input, y(z) € R™ is the
measurement output, and z(z) € R? is the signal to be estimated. Suppose the system ma-
trices are uncertain but belong to a given polytope:

M=(A,B,C,D,L) € & (2)
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k
= {(A,BgCgDaL) ‘ (A,B,C,D,L) = Zri (A;»B;,C,,D;, L) ;. = 0; :Zfi : }
1=1 ‘
We are interested in designing filters of order £ described by

() = Ap £(2) +Bey (1), z(2) = Cr %(2) (3)

where X(z) € R* (k=n for full-order filtering, and 1<Ck<n for reduced-order {iltering).
Then the filtering error system can be described by

E(t) = At(t) +Bo (), e(t) = CE(2) (4)
— A 07 = [ B 7 =
—— r 2 T — — - — —
where §(8) ={x() ", x(t) ", e(e)=z(t) —z(1), A B.C A, B B.D |’ C
[L _CF:I-
The transter function trom @ (¢) to e(¢z) can be given by
T(s) = C(sI —A)'B (5)

Definition 1. The L,-L .. norm of the transfer function T(s) is defined as.

| T(s) ||, . = sup (Sl;lp”e(t) ”z/([:ﬁ fole ”%dz)m)

0#£wE L,
Our purpose is to design filters of form (3) for system (1), which guarantee the filte-

ring error system (4) to be asymptotically stable and | T(s) | L, L <<y(y>0). Filters satis-
fying the above conditions are called L,-L .. filters.

Remark 1. Reduced-order filters, i. e., filters of order lower than the order of the
system to be estimated, are often desirable to reduce the complexity and computational
burden of the real-time filtering process. Compared with the full-order case‘®®, the re-
duced-order filtering problem receives relatively less attention and still remains a chal-
lenge. In this paper, we propose a new approach to solving both full-order and reduced-or-
der {iltering problems in a unified framework.

Lemma 1(Projection Lemma™!). Given a symmetric matrix ¥€ R™™ and two matri-
ces M and N of column dimension m, there exists an X such that the following LMI holds:.

v+MX'"N+N'XM <0 (6)
if and only if the following projection inequalities with respect to X are satistied
MY YM | <0, T¥N,| <0 (7)

where M, and N | denote arbitrary bases of the nullspaces of M and N, respectively.

3 Main results

Lemma 2%, Consider system (1) with M€ & fixed and let Y>>0 be a given constant.
Then the filtering error system (4) is asymptotically stable and | T(s) ||..,_ <y if and only
if there exists a positive definite matrix P€E R * """ gatisfying

CPCT < yI, AP+ PA"™ +BB" <0 (8),(9)

Extending Lemma 2 to polytopic uncertain systems, we have

Corollary 1. Consider system (1) with M& ® representing an uncertain system and let
¥y >0 be a given constant. Then the filtering error system (4) i1s asymptotically stable and
| T(s) ||, <<y if there exists a positive definite matrix PE€R"™*""* satisfying

—y*] C,P]] . AP+ PAT B, "
L PC;I‘ o P_i< , L E;I‘ — I_J
where (A,,B;,C,) denotes matrices (A.,B,,C;, D., L;) evaluated at each vertex of the
polytope.

Corollary 1 is the robust L,-L .. performance condition based on the quadratic stability
notion, which entails a fixed positive definite matrix P to satisfy all the uncertain parame-
ters of the polytope. In the following, we will derive another performance criterion by

means of Projection Lemma.

< 0, vi‘“—:lazs'"ak (10)
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Theorem 1. Consider system (1) with M & R fixed and let Y>>0 be a given constant.
Then the filtering error system (4) is asymptotically stable and | T(s) | Lo <<y if and only
if there exist positive definite matrix YE R"™#*™™® and matrix GE R"W™P 78 gatisfying

| —G'—G G'A+Y G' G'B
—y'I C - A'G+Y — Y 0 0
ot -y lSY G 0 —Y 0
- BTG O 0 — [

< 0

(11),(12)

Proof, Define P=Y"*; then the equivalence between (8) and (11) can be easily es-
tablished by Schur complement. Rewrite (12) as

0 Y 0 0 -
Y —Y O 0 . .
0 R +M'G'N+ N GM <0 (13)
0 0 0 —1I.
0 I 0 0
where M=[I 0 0 0],N=[—I A I B]l. Then M, =10 0 I 0|, N| =
0o 0 0 I
AT I 0 0
I 0 I 0].
BT 0 0 Il
By LLemma 1 (Projection Lemma), (13) 1s equivalent to
YA +A'Y—Y Y YB°
Y —Y 0 [<<0 (14)
) B'Y 0 —1

A congruence transformation to (14) by diag{Y " "',Y ', I} together with a Schur com-
plement operation yields the equivalence between (14) and (9).

Extending Theorem 1 to uncertain cases leads to the following corollary.

Corollary 2. Consider system (1) with M& fR representing an uncertain system and let
¥y>0 be a given constant. Then the filtering error system (4) is asymptotically stable and
| T(s) || 1,1 <<y if there exist positive definite matrices Y, €ER""®*"7® , i=1,2,+,k, and
matrix GE R"T® X0 qatisfying

— GT T G GTA:_ + Yf GT GTB{_

— Y1 C; 7 ATG +Y, —Y, 0 0 |

| (—;}f _‘Y_]< O, G_I_ 0 -V 0 <_ 0, VI“—“‘ 1!2!'"913
 BIG 0 0 — T

(15)

Remark 2. It should be noted that Lemma 2 and Theorem 1 are equivalent for systems
with exact data. The difference between them lies in the fact that Theorem 2 exhibits a
kind of decoupling between Lyapunov matrix and system matrices (1, e. , there 18 no prod-
uct between matrix Y and system matrices). This kind of decoupling is enabled by intro-
duction of a slack variable G and enables us to obtain a parameter-dependent L,- L .. per-
formance condition for polytopic uncertain systems (see Corollary 2).

Then the following theorem solves both full-order and reduced-order filtering prob-
lems in a unified framework on the basis of Corollary 2.

Theorem 2. Consider system (1) with M& & representing an uncertain system. Then
an admissible robust L,-L.. filter (3) exists if there exist matrices Y,, =Y, >0, Y, &€ R,
Y,,ER™*, Y, =Y >0, Y, € R, i=1,2,*,ky RER”", FER"*, VE R, A €
R¥* Br€ R*™, Cr € R*** satisfying
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— 71 L, — Cr '
* ‘"?11- —?2;- < 0, Vitl,zg“',k (16)
_* * — Y,
—R'"—R —FEF—V R'A,+EBzC;+Y,, FAr+Y,, R' EF R'B,+EB:D,
* —F—F' V'A, +B:C;,+Y;, Apr+Y, V! F V!B, 4+ BeD,
% ¥ — Yy —Y,, 0 0 0
* * * — Y., 0 0 0 <0,
* * * x —Y,, —Y, 0
* * % % * —Y.. 0
i ¥ * % % * * —1 i
Vi=1,2,-,k (17)

where E==[I,x; Oixw-n» |' s and I denotes an identity matrix. Then an admissible filter
can be given by
Ar = F'Ar., Br = F'Bp, Cr=Cp (18)
Proof. Since (17) implies F' +F >0, F is nonsingular. Therefore, we can always
find square and non-singular matrices G,; and G, satisfying F=G;,G' G,;. Now introduce
the following matrices

R 0 7 . _ 1 o Gy Gz T
J = L0 Gy Gy O =R G = Vi s - LGaE' Gy ’
Vo RS €Th _ ]“T[Ylt 3:2::”]__,1 - Ar BF:I_ |: 2t 07 'éy BF:| "G Gy O
o _ * Ygf_, * Yg,;_ ’ ___CF O o O I_ __CF O - O I

(19)
By some routine matrix manipulations, it can be readily established that (16) and
(17) are equivalent to

- — 7ZI Ct] |

3 _JTYJ— <O! Vi — 1923"'9k (20)
— JN(GTH+GT JYGA +YHT JTG']  JTG'B;”
* _JTYi] O 0 .
X x —"‘JTYI*J 0 <Oa Vl”‘“‘laza 9k (21)
_ * ¥ ¥ — T

Performing congruence transformations to (20) by diag{I,J '} and to (21) by diag{J ",
J7 '], I} yields (15), Therefore, from Corollary 2 we can conclude that the filter with a
state-space realization (Ar,Br,Cr) defined in (19) guarantees the filtering error system
(4) is asymptotically stable and || T(s) | L, <Y-

In addition, from the above proof we know that an admissible filter can be constructed
by (19). However, there seems to be no systematic way to determine matrices G, and G,
needed for the filter matrices. To deal with such a problem, let us denote the filter trans-

fer function from y(¢) to 2(¢) by T;,(s) =Cp(sI—Ap) ' Br. Substituting the filter matri-
ces with (19) and considering the relationship F=Gj, Gy Gsy s we have Ti, (5) =Cp(sI—
F7'A:) 'F 'B:. Therefore, an admissible filter can also be given by (18).

Remark 3. Note that (16) and (17) are LMIs which are not only over the matrix vari-
ables, but also over the scalar ¥*. This implies that the scalar ¥* can be included as one of
the optimization variables for I.LMIs (16) and (17) to obtain the minimum noise attenuation
level,

Remark 4. It should be noted that the standard linearization procedures proposed in
3,6 ] assume the off-diagonal entry of certain matrix (the matrix to be partitioned) to be
square and nonsingular, therefore they can not be used to deal with the reduced order filte-
ring problem. To keep the reduced order filter design tractable, here we have found a dif-
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ferent linearization procedure, which solves both the full-order and reduced-order filtering
synthesis problems in a unified framework. For the full-order filtering, matrix E defined
in Theorem 2 becomes an identity matrix of dimension n, and for the reduced-order case,
we have imposed certain structural restriction on the (2,1) block entry of matrix &, which
introduces some overdesign into the filter design.

Remark 5. It is conjectured that the approach proposed in this paper can be further
extended to deal with robust filtering problems with pole constraint, which have been ad-

[9,10] -

dressed in prior works in the quadratic framework.

4 An illustrative example
Consider the following uncertain system borrowed from [ 7,8

: 70 —1+40. 37 ~— 2 07
x(1) = B 0.5 _x(t) +- B O_m(t),
y(¢) = [—100 100 ]x(t) +]10 1lew(, z() =1 0]x()

where a represents an uncertain parameter satislying —1<Ca<C1,
By Theorem 2, the minimum guaranteed L;-L .. cost for the full-order filtering 1s giv-

en by y* =1. 1250, with the associate filter matrices

-— 104. 9370 104, 7751 - -—1.5130 -
N ’ — ; = [—0.7973 0. 1401
Ar | 88.0213  — 88.0878_ By ' 1.2408 Cr = [—0.7973 )

By the method proposed in { 6 ], we can obtain ¥" = 1. 5241, showing less conserva-
tiveness of our approach.
When using our approach to design reduced-order filters, the minimum guaranteed

L.-L . costis found to be y* =1. 9830, with the associate filter matrices
AF =— (), 7673; Bp = (. 0120 ’ CF - T O. 7980
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AHEEEZRFZVWER L- LR EFI %
Hex TEg
(B RE T K FHESHMLRZHARP.L BRE 150001)
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M E GHEETEHRL T TN ESRFERS L,- L EEEN. SCEWAEHBE, =N
E3H Lyapunov BEES ZHREEZE o BN RFHE, S ENHATAH SRS EE®RIED S
B A Lyapunov R, FIRAZHAHE, RALTEEBRAERXEARESRS T LHAEAWERFEN S
PR &8 L- Lo RBMETHFAE. MBREA A ESEHE-EHTHREERSARM L-L

RS SCANET RRBENBEFRMAL, ACRE BT EREBIRBRTFHE.

XEW BERE, KUEEBEAFI, L-LAEGR, B
RS ERS TPL3
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2002 FHRERZE

T &% Tx&E THEK MPRE FEL TN O THE®R TBEMNK TFTEILT 5 R
H5LF  HF BR% HRE HoifE FEH XEK  THEE TTRE  ERERE
BEF X E X KB EXE E O£ 5 T K X B X B X BK X4
ER¥ £ EREK O EPE OEBRT O OELHE EXRRKR O OEPHE O OEXW O OEER
FIEEH  EARKW FEAE FEEKkR FHE ERH  FELEXR EERM FEHhe FEHLC
FEZ EEHAE ETFE¥ e EWMFE EXER THA BRSO OEEZ  ITHEE
ETRE FRY XHEg M XBFE OB OB AFRH XAy F K NEA
fFREK & K EBXF Bl BH{C BEX SNE RE® REF BAEM
R OMEKREL MEE HAER | B 55} ES i A ZS

wa MEH £ B O ¥ O EFEH EER  EZE O EGE  HEEW XBH
KFF O MDA HMX xR X F XNKFE XKE  XEFR XIEK X
XIgrEF  XgF  xiELE XEX XER MRE ARG AIRE AVERE O HER
g AVEE K P FBm4a K R ORRE KR KHLE O KE¥EBR KES
EwAE ZEY BEE O F B O FHER AUE BiRE  SFEx FEM mE
FrEEER M = MxEE ARE R %71(15}1 RIEK  RERKR HKHK RER
= W R B RIE XN RE& =B <E®H RBY RBEFE RHET
~EM REHE REY K R RERN RKRRF KEE MNHAE K & K &
7w & kJIsE IR HKFAE MIoAR kA ikt EKF O KXKFE O XA
KAKF  IREKA KL RESE FARE KR KREZXR O KR ke  KIRE
KR KWE F R OF R ZFAR FLEE Fbxm FhHIL FHE FFU
FHE FHEX FHX FHUK FME FREE FEE ZFEER PR ZHE
FHEw O OFEER B AN B ® B s Bt BRE BEE BERK B¥FL
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