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Abstract A new model predictive controller ABRMPC is presented for constrained linear system
with bounded additive perturbation. On the one hand, by introducing input amplitude decaying ag-
gregation strategy, the number of optimization variables at every time is greatly reduced so that
the on-line computation is simplified. On the other hand, having taken into account the perturba-
tion at each time, some new state constraints are obtained and thus the state of the real system is
kept in the original constraint domain. The paper emphasizes on how to get the feasible solution at

next time and gives the condition that the decaying coefficient should satisfy. When time goes to
infinite, it is proved that the system input becomes zero and the controller drives the system state
to approach the invariant set. It is concluded that the controlled system is robustly stable. The
conclusions are finally verified through a simulation example.
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1 Introduction

MPC (Model Predictive Control) has attracted wide attention in recent years because
of its efficiency in dealing with constraints'!. A typical MPC involves on-line solving a
constrained nonlinear optimization problem. The computation burden depends on the num-
ber of control variables and is often huge. In order to reduce the on-line computation bur-
den, Du et al.'* proposed an input amplitude decaying aggregation strategy where the
number of on-line optimization variables is greatly reduced.

The closed-loop stability of model predictive control has been the focus of research for
a long time. For nominal systems without uncertainty or additive perturbation, the prob-
lem has been well solved for a certain degree. Mayne et al.'* had summarized four stabili-
ty conditions for such systems. However, in real applicants, the controlled plant is often
perturbed and the model/plant mismatch always exists so that the robustness problem is
also interesting to the development of stability research. Scokaert ez al. ' firstly proposed
the condition of exponential stability and then asymptotic stability for systems with deca-
ying additive perturbation. By means of Tailor formula, Nicolao ez al. ™ proposed the con-
ditions of robust stability for systems with gain or additive perturbation and further pro-
vided more detailed conclusions for linear systems. But their conclusions could not be used
because the expression of optimal cost function is hard to obtain. Scokaert ez al.'® pro-
posed “min-max feedback model predictive controller” which optimizes the “worst-case”
cost function and gets a control sequence when the system state 1s out of an invariant set,
At the same time the stability property of the controller was discussed. But the computa-
tion burden for the feedback controller is huge. For constrained linear systems with addi-
tive bounded perturbation, Chisci ez al. "’ proposed a robust MPC. They got the perturba-
tion domain at every time and designed the controller to make the system state within a
smaller domain after considering the domain of perturbation. The model used in the con-
troller 1s a nominal one. They also proved that the controller can drive the system states
into the invariant set from outside.
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Combining the concept in { 7] and the amplitude decaying aggregation strategy in [ 2],
for perturbed constrained linear systems we present an aggregation based robust model
predictive controller named ABRMPC, The advantage of the controller lies in that the
computation burden can be reduced and at the same time the state of the real system can be
kept in the constrained domain. Furthermore, the controller can drive the real system
states into the invariant set from outside if certain assumptions and conditions are satis-
fied, which makes the controlled system robustly stable.

2 Preparation

Firstly we give the following definitions and assumptions.

Definition 1'"'. For two sets S, T and S2T, define S—T={z|z+yES,z€S, YV y€&
T}, and S+T={z|z=x+y, VY xE€S,V¥VyeT).

From Definition 1, we can see that for an element z 1n S, if z+y& S for any y& T,
then z&€S—T; S+ T is the set of elements which are the sumof Yx&€ S and Vy&e T, As-
sume S, T are the sections surrounded by the dot-dash lines in Fig. 1 below. Then S—T,
S—+ T are the sections surrounded by the real lines in (a) and (b).

Ay

2l |

Fig.1 S—T7 and S+T

Definition 2. Assume Y is a closed compact set and 0 €Y, denote the boundary of Y
by 8(Y) and define 7(Y)=max | y|.

€ 5(Y)
7(Y)can be regarded as the radius of the minimum outer hyperball of Y.

Definition 3. For VY r=>0,denote B, as a hyperball with the radius r centered at the or-
1g1n.

Consider the system described by the following equation.

x(k+1) = Ax (k) + Bu(k) +w(k) (1)

where x(£) € X&R”, u(k) €cUESR™ and @ € QCR” are the system state, system input and
bounded additive perturbation respectively. X, U and (2 are all closed compact sets. 0&€ X,
0€ U and U is a convex set. (A, B) is controllable. For a matrix F &€ R™", define FX =
{Fx|x€ X} and assume that V=U—FX is not empty, 0€V and V is convex. F is the fol-
lowing feedback matrix which makes the eigenvalues of (A+ BF) small enough.

Assumption 1. max{|A(A)|}<1 and |A| £26(A)<1 hold. Otherwise, since (A, B)
is controllable the requests above can be achieved through feedback. We can have the sys-
tem input as u(k)=Fx (k) +v(k) (v(k) €EV) so that system (1) becomes x(£+1)=¢x (k)
+ Bv (k) +w(k) where Y= A+ BF. Since (A, B) is controllable, we can make the eigenval-
ues of ¢ approach the origin and differ with each other. For simplicity, we assume that As-
sumption 1 directly holds for (1).
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Let R =, Ri={o |l €02}, R, = {Aw: + . | 0. E0Q} s *- ,RHZ{ZA*'”COH—H |
i—=1

@D, i+1 < 0s1=1,2, , *=*. According to Assumption 1, there exists a positive integer s

such that A*""==0 for 1=1,2,. Then we have R..,=R..,=++ and R.., 2R.2DOR._, -
DR, 2DR,. At time £, for Vx(B)ER..,, we have x(F)=A'w, T A '@, +++w®.., where
D102 s0.+1 < 2. If u(k)=0 and the perturbation at that time i1s @(%), we have x(k+1)=
w(F)+A "o tA®w, T+ A0, » (k) E Q. Since A =0, x(k+1)€E R,;, holds ac-
cording to the definition of R,.;.

As discussed above, we adopt R,,, as the invariant set, The system state of (1) can
be kept in the set if the input is u(£) =0. If we denote X;=X—R.,, then X, 22X, 2 X,2D---
OX. DX =X,,,=+, We assume 0€ X,., and select r, >0, r, >0, -+, as large as pos-
sible and r, =7, =+++ so that B, & X,, B, &X,, *-. We consider the {following assump-
fions:

Assumption 2. For B, defined above and the set 2, we have B, +AQCB, , i=1,2,-

The assumption means that, for Yx& B, and Yeo&Q, We have x—+ A o< B, . The
assumption is reasonable because according to Assumption 1, |A[<C1 and the set 2 is
bounded so that [[A|’|@| can be small. If there exists an ¢ which does not agree with As-
sumption 2, we can choose an appropriate rivq satisfying ri,,<r;+; and B,,;H +A'Q ,*_,C_Bri ..
Then adjust ;15 7,435 *** so that the assumption can be satisfied.

Having given the definitions and assumptions above, we now present the ABRMPC
controller (aggregation based robust model predictive control) in the following.

3 ABRMPC controller

Similar to [ 7], the controller we propose will meet the following requirements. 1)
with additive perturbation, the states of system (1) should remain in the constraint do-
main X; 2) u(k)—>0 when k—>co,

Firstly, consider the nominal model predictive controller when @ (%) =0

min J (k) = Z luCk+i| k)| (2)

Ulk)

s.t.  x(k+1) = Ax(k) +Bu(k) x(k| k) = x(k)
u(k+1\| k) e U
x(k+:1|k)DE X 1=0,1,,N—1
x(E+N|Ek)=0
UCk) = u(k)ulk+1 | k), ulk+N—1]|k]
where x(%£) 1s the system state at time k.

If we regard |u(k+ilk)||? as the energy, then the physical meaning of the perform-
ance index 1s to minimize the energy needed to drive the system state to the origin in every
predictive horizon.

The nominal predictive controller has the following property.

Theorem 1. If the optimal solution of the nominal predictive controller (2) at time £ 1s

U, (k) and its first element u, (£) is applied to the system at that time, then wu, (£)—0
when k—co0,

Proof. Since x(B+N-+1|£)=0 when x(+N|%k) =0 and u(k+N|k)=0, Ulk+1)=
[U(k),0] is a feasible solution for the controller where U(£) are the 2nd to the Nth ele-
ments of U, (£). Denote the optimal cost function for U, (k) at time £ by J, (k) and the
cost function for U(k+1) at time £+1 by J(k-+1). Then according to the optimality prin-
ciple we have

Jo(B) — Jo(B+1) = J,(B) — J(k+1) = [lu, (k)| (3)
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We sum the right and left sides respectively of the above inequalities starting from time £ and

get J, (k)—]g(m)}zu u, (k+1) ||%. Since J, (k) is finite and J, (c0) >0 ,E” u, (B+1) || % is
= () 1=

finite too. Then limu_ﬂ (k) =0 1s proved.

f—w 00

We can see that at every time the optimization variables for controller (2) are u(k+ilk),
i=0,1,*yN—1. Since the constraints x(k+:|k)€E X, u(k+i|k) €U may be nonlinear,
the optimization at each time is a nonlinear programming problem. The computation bur-
den is thus huge and will increase greatly with N. In order to solve the problem, Du ez
al.'™ introduced aggregation transformation U (k) = Hu (k) where the aggregation matrix

=[1, pR)I, <+ o '(B)I,]" where 0<Cp(k)<{1 means that the input amplitude is
decaying. Apply this strategy to controller (2) the number of on-line optimization varia-
bles could be reduced to single u(k) and p(k). It o(k) 1s given, then only u(k) 1s the opti-
mization variable.

The introduction of aggregation means additive constraints in problem (2) .

uCk+1| k) = o' (Bulk) 5:0,1,---,N~——1 (4)

From the proof of Theorem 1, we can see that U(k+1)=| U(k),0] is feasible at time
£+1 1s important to the stability of system. However, when additive constraint (4) is added
to controller (2), U(k-+1) is not feasible any longer because in most cases o" (k)u(k) =0
does not hold. As a result, the system stability can not be ensured as in Theorem 1. Al-
though the on-line computation burden has been reduced by means of aggregation, it is
necessary to rediscuss the stability of the controller when aggregation constraint (4) has
been introduced.

We note that it is a nominal case we have discussed above. When there exists additive
perturbation or @(%)+#0, the state constraints may be violated. Then for the real system
(1), the controller should have the property of robustness. Since x(t(-+1)=Ax (k) +
Bu(k)t+w(k)e {Ax(R)+Bu(k)+zi{z€R,}, x(+2)=A’x(k) T+ ABu(k) +Bu(k+1)+
Aw ()t o(k+1)€ {A°x(k) +ABu(k) +Bu(k+1)+z|z€ER,} .+, by combining the defi-

nitions of R and X;, we can see that if we denote the system state at every time as x(k+1)=

Ax<k>+2AJBu<k+z—1-;>+Z}Afm(/e —1—j)Ax, (k—l—z)—l-ZA-’w(k—i—z—l——J),
j=0

then x(k+1) € X holds if the nommal state x,(k+1) &€ X,. This means that with the exist-
ence of perturbation, if the nominal system state is kept within a certain bounded domain,
for the real system the constraint x(£-+i|k) € X can be satisfied. Then it is possible to get
stability property.

Through the discussion above, we introduce the concept ol aggregation and robust-
ness into controller (2) and get the following controller ABRMPC (aggregation based ro-
bust model predictive control) .

— M
. : VA f
Join J(k) = E NuCk+i | R TS (5)

s, t., x(k—l—l) = Ax (k) +Bu(k), x(k \ k) = x(k)
uCk+i| k) =pRulk), 1=1,2,- ,N—1
uClk+i:i| k) € U
x4+ | B|<r,y j=0,1,,N, where N> s+ 2
0 < p(k) <A
where A 1s a positive number less than 1 and M is a positive constant, Comparing with
problem (2), we can see that the optimization variables of problem (5) are u(%k) and p(%)
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M .
o(k) 'S
added to the performance index which ensures that the decrease of u(k+i|k) is not too quick.
Aggregation constraint (4) is added in and the constraints x(k+i|k) € X and x(k+ N|k)
=0 are replaced by ||x(&+j k) | <r,.

so that the number of optimization variables has been greatly reduced; moreover,

4 Property of the ABRMP controller

Theorem 2. Suppose Assumptions 1 and 2 hold for the ABRMPC controller (5) and
the following inequality holds;

rv — |A|Y ' — AN B|F(U) — | AV |7(@2) >0 (6)

Then there exists e>0 such that for A=¢ if the optimal solution of the controller at time £
is Uy (B) =uy (B) 00 (B)ug (k) s+ s 0N " (Ru, (k) ], then U(k+1)=p, (R)U, (k) is a feasi-
ble solution for the controller at time &1 1.

Proof. As U, (%) is the optimal solution at time %k, there exist a feasible solution U (k)
and 0<p(£)<C1 such that o’ (R)u(k) €U(=1,2,+,N—1).

Applying x(k+1)=Ax (k) +Bu(k) we have

x(B+i| k) =A7'x(+ 1| k) +[p(R)A "B+

w4 o (RBJu(k), i=1,2,,N (7)
Since |x(E+11k)|<<r, and |u(k) | <<F(U) according to Definition 2, we get
Ix(k+ N | &) | |A|¥'r + Lo |AN 2B+ - + " (&) | B 7 (LD (8)
Define ty(p) =p|| AV B 4+ +p"" | B|l and it is easy to show
A$0) = 0 and 2:(0) = 0 (9)
IO

By combining it with inequality (6), it is clear that there exists a positive number ¢ >

0 so that for V p(k)<{A=-¢ the following inequality holds
|A|N " + xR < vy — AN B|7U) — AN |7 () < vy (10)
Assume that x, (B+ilk)(i=1,2,+-,N) is the system state corresponding to the opti-
mal solution U, () =[u, (&) ,0, (B, (k) y++0Y * (k)u, (k)] at time £, and that x(k+1-+1]
E4+1)(i=1,2,+--,N+1) is the system state for U(k+1)=p, (k)U, (k). For the real sys-
tem x(k+1|k+1)=Ax(k|k)+ Bu, (k) +w(k), then we get x(k+2|k+1)=x, (+2|k)+
Awm (k). Since u, (&) is the optimal solution, |x,(2+2|k)|<ry, i e, x, (B +2[R)EB,,.
By Assumption 2 we get x(k+2|k+1)€EB, , i e., | x(E+2|k+1) | <<r,. Similarly, we

have

From x(A+N-+1|k+1)=Ax, (k+N|k)+pY(E)Bu, (k) +A%w () =A"x (k+1{k)+
[po (BYAN 'B4+02 (B)AN 2B+ +p) (k) Blu, (k) +A"e (k) and | x, (k+1R) || <<y we

have

| x(E+ N+1]k+D|<ANIAIN 7 +p, (OOL |AN ' B|+

0, (B) |ANZB|+ =+ + o) (R) | B TR 4+ AV [[F(@) (12)
Since p, ()< 1 and according to Assumption 1, |A|| <1, from (12) and the definition
of tn(p), it is easy to show

[x(E+N+1|k+ 1|

| ANy 4 tn (o (EDFU) + AN B (UD) + AN [7() <rv - (13)

From the above, we know that U(k+ 1) =p, (k)U, (k) is a feasible solution for
ABRMPC controller at time 2+ 1.

Theorem 3. For ABRMPC controller (5), the conditions of Theorem 2 and A=min{1— »,e;
hold, where 7 is a positive number which is small enough. If the system initial state x(0) &
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R..,, where R,., is the invariant set defined betore, then x(7) asymptotically approaches
R.., when i—>o00,

Proof. Assume that U, (&) =[u, (k) 0, (EDu, (k) ,+++,0) ' (B)u, (k) | is the optimal so-
Jution for the ABRMPC controller at time £, and that the system input at the time is
u, (k). The following proving process will be divided into two parts; 1) u, () =0 when
b—>co s [I) For system (1), x,(k)—>R,.i; when A—>co,

I) Denote J,(%k) as the cost function for the optimal solution U, (}e) of ABRMPC con-
troller at time 2, and J (k-+1) as the cost function for the feasible solution U(&+1) =

0, (YU, (k) at time £+1. Then according to the optimality principle we get the following
inequality

JoB) — JoCk+1) = Jo(b) — J(k+1) = [1—p, ()]s (&) | (14)

Similarly, we have

JoCe+ ) —Joe+14+) =Z[1—pN e+ Jus (B +5) |

We sum up the right and left sides of the inequalities above from time &, respectively, and
get

Jo(B) — J,(o0) = Z ([1— o e+ )] lug B+ D)%}
We note that p(k)<<1—7 leads to 1—p N(k+z)>1—(1—77)2N and if we define £=1—(1—

7", then we get ]g(le)‘“fg(m),}-ﬂfz |uo (k1) || 2.
Since J,(c0) =0, 52 lu, (B+14)[|2>>0 and & is a constant positive number, we have

E” u, (k+1) | ?<oo so that l1m“u0(k—|—z) | =0, which shows that hm lu, (&) || =

I—IH::G-

ID Since |A(A) | <1, for the state equation x(k+1) “Ax(k)-l-Bu(k“ used in the
ABRMPC controller we have

limx (i) = lim[ Ax (0) + EAJBuO(z —1—j)]=0 (15)

!—1-':1‘.‘:-:3 1— 3

For the real system (1), we have

limx (i) =lim| A'x (0) + EA»’BuO(z —1—j)+ ZA*’co(z —1—j) |=

3—-1::-::1 = 0

hm[EA*’]:o(i-— 1—j) ] (16)
Then limx({) € R,;, is proved.

Remark. Combining the concepts of aggregation and robust stability, for the con-
strained linear system with bounded additive perturbation we present a new intinite horizon
predictive controller ABRMPC. The work of the paper focuses on two points: a) how to
get the feasible solution at time £+1 when the optimal solution at time & is available; b)

how to drive the state of the real system to the invariant set when the optimal control law
is applied to the plant.

§ Simulation example
Consider the following ABRMPC problem:
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60
: _ - > o000
min, J(k) = Z; luCk+i]| B)|* A o)

st xGD =["5 9 e + 17 utey x0) =2
ulk+ilk)=7pRulk) 1=1,2,,60
uCk+i|k)e [—3,3]
x4+ | B, 7 =0,1,--,61
0 < plk) <A
The constraints of system (1) are X = {x| | x[|<50}, Q= {(wisw2)" | || (w1 r0:)T || <
0.9}. We take s=55 and 7=0. 0001. According to the definitions of X; and r; we get the
values of r;; r, =49. 1000, », =48, 3800, ---. We also get the invariant set R,y; = {(x;,
Tz )| H (xy sx2) " H§4 5}. According to (10) we have e=0, 9729. Fig. 2 is the state trajec-
tory of the real system (with £ from 0 to 50).

Jo———— - e EEE—
35}

30}
25
20 F

.Ill(k)
ek
&N
H

0
_5{
—10 —

) =20 =10 0 16 50 30 20 50 60
1 k)

Fig. 2 The State trajectory

6 Conclusions

In this paper a new predictive controller ABRMPC is presented for the constrained lin-
ear system with additive bounded perturbation. Although in the controller the system state
has been kept in a smaller domain at each time, the state of the real system is ensured to
be in the feasible domain. On the other hand, from Theorem 3 we see that by using the
controller the state of the real system can asymptotically approach the invariant set and can
at last be kept in the set with u(£) =0 so that the controller is robustly stable.
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