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Abstract Using classical steady-state Kalman filtering theory, a new approach of designing Wie-
ner state estimators is presented, whose principle is that based on steady-state Kalman filter and
predictor given in the Wiener {ilter form, and using the autoregressive moving average( ARMA)
innovation model, the recursive version of non-recursive steady-state optimal state estimators
yields the Wiener state estimators. The proposed Wiener state estimators can handle the state fil-
tering, smoothing and prediction problems in a unified framework. They have the ARMA recur-
sive form, and have asymptotic stability and optimality. A simulation example shows their effec-
tiveness.
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1 Introduction
It is well known that classical Kalamn filtering method can't handle the state filtering,
prediction and smoothing problems in a unified framework, particularly, the computation
of Kalman smoother is complex'’). Though a class of unified steady-state Kalman estima-
tors is presented based on the modern time series analysis method in [ 2], but its disadvan-
tage 1s that the estimators are not asymptotically stable for unstable systems, and require
the computation of the optimal initial values. The Kalman smoother in [ 3 ] also requires
the computation of the optimal initial value. Only the Wiener state prediction problem is
handled based on the polynomial method on frequency-domain in [ 4 |, and the solution of
Diophantine equations is required. Unified Wiener state estimators are presented based on
the modern time series analysis method in [ 5], but they require the computations of the
pseudo-exchange and pseudo-inverse. In this paper, using the Kalman filtering theory, a
class of Wiener state estimators with ARMA recursive form is presented for completely
observable and completely controllable systems or stable systems, which can handle the
prediction, filtering and smoothing problems in a unified framework, and has the asymp-
totic stability and optimality., It avoids the solution of Diophantine equations and the com-
putations of the pseudo-exchange, pseudo-inverse and the optimal initial values, so the
computational burden may be reduced, and the disadvantages of above mentioned methods
are overcome.
Consider the discrete time-invariant linear stochastic system
x(t+1) = dx () +T'w(e) (1)
y(t) = Hx () + v(¢t) (2)
where the state x(¢) € R*, measurement y(¢) € R™, measurement noise v(¢) € R”, model
noise w(t) &€ R", &,I"'y H are the constant matrices with compatible dimensions.
Assumption 1. w(z) and v(z) are independent white noises with zero mean and variance
matrices Q>0 and R>0, respectively.
Assumption 2. The initial state x(¢,) is independent of w(¢) and v(z).

1) Supported by National Natural Science Foundation of P. R. China (68774019), and by Natural Science Foundation
of Heilongjiang Province (F01-15)
Received June 20, 2002;in revised form December 15, 2002

Wi EH B 2002-06-20; BB HRE  2002-12-15



No. 1 DENG Zi-Li et al. : Wiener State Estimators Based on Kalman Filtering 127

Assumption 3. The system 1s completely observable and completely controllable, or is
stable (i. e., @ is a stable matrix).

The problem is to find the Wiener state estimators x(z]t+ N) of state x(#) based on
measurements (y(t+N),y(t+ N—1),++). They have a transfer function matrix form

with the measurement signal y(z+ N) as input. For N=0,N>0 and N<{0, x(¢t|{t+ N) is
called Wiener state filter, smoother and predictor, respectively.

2 Lemmas
Lemma 1'Y. For the system of (1) and (2) with Assumptions 1~3, the steady-state
optimal Kalman filter and predictor are given by

x(t | ) =¥x(t—1|t—1)+ Ky (3)
x(t+1|8) =W¥px(t|t—1)4 Kpy () (4)
where ¥,=(I,—KH)® and ¥p=(P— KpH) are stable matrices. I, is an nXn unity ma-
trix. K and K, are steady-state filtering and prediction gains respectively, and K=3H"'
| HSH'"+R ]!, T denotes the transpose, K =@®K. > is the steady-state prediction error
variance matrix, and it i1s the unique positive definite solution of the following Riccati e-
quation

S=¢[35—-SH'(HZH'+R)7'H: |®"' 4+ Qr' (5)
Lemma 2. For the system of (1) and (2) with Assumptions 1 ~3, the ARMA innova-

tion model is given by

Alg Dy = D(g " )e(d) (6)
where ¢ ' 1s the backward shift operator, i.e., ¢ 'x(¢) =x(t—1), and
A(g") = D(q7") — Hpadj(I, — ¥,qg ' YKq
{D(ql) = J(qg )1, (7)
P(g™") = det(I, — ¥,q7)
or

(A(g™") = D(¢'") — Hadj(I, — Wpq ' YK pg™

<D(qg") = ¢(g I, (8)
P(g') = det(I, — ¥pqg ™)

where the definitions of K,Kp, ¥, and ¥p are the same as Lemma 1, and (7) and (8) are
equivalent, ¢(g~ ') is a stable polynomial. The white noise e(¢) with zero mean is the inno-

vation process of y(2).

Proof. For the systerma of (1) and (2) with Assumptions 1~3, we have the steady-
(1]

state optimal Kalman predictor

x(t+11)=Px(t|t), y)=Hxt|t—1)+e() (9)
Using (3) yields, we have

x(t|t) =, —¥q ") 'Kyt (10)
Using (9) and (10) yields, we have
y(t) = Hp(I, —¥,q ') ' Kqg ' y(t) + (1) (11)

Let the determinant and adjoint matrix of matrix X be det X and adjX, respectively.
Hence, using (11), we obtaln
det(I, — ¥, )e(t) = {detd, — ¥,q '), — Hbadj(I, — ¥, YKq ' Jy(z) (12)
Therefore (6) and (7) hold. Additionally, from (4) ard (9) we have
y(t) = HU, — ¥pq ') ' Kpqg ' y(t) + €(s) (13)
which in twin leads to
det(I, — ¥pq~ ' )e(t) = [det(I, — Wpq ') I, — Hadj(I, — ¥peqg ' YKpg™ |y(z) (14)
therefore, (6) and (8) hold. From [ 1] we have det(I, —W¥,q" ') =det(I,—W¥pq '), and
J(qg~ ') 1s stable, And using (12) and (14), we have (7) 1s equivalent to (8). The proof is
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completed.
Lemma 3. For N>0, the steady-state optimal non-recursive smoother is given by
N
¥t t+N) = x| )+ D MeCt+ ) (15)
i=1
where the smoothing gain M(7) 1s computed by
MG) =3[, —KH)'®" 'H'[HZH" +R]1I"', GZ=1) (16)

Proof. Taking the finite initial time 2z,, in the linear space generated by the finite
measurements (y(z,) s y(zo+1),++,y(t-+N)), from [ 1 | we have the optimal non-recursive
smoother

N
¥(2 | t+N) = x| )+ D M | t+De(t+1) (17)

;=1
t+i—1

M(t | t+1) = HA(])K(t_'_I)! AG) =PU | DP'P'(+1 ]| (18)

where P(:|7) and P(i+1 rz) are filtering and prediction error variance matrices, respec-
tively. K(z+41) i1s the filtering gain.

Using Assumption 3 yields that there exists a steady-state Kalman filter, so that let-
ting t,—>—co, we have P(i|1)—>P,P(i+1|1)—>3,K(i)—>K, where P,3,K are the corre-
sponding steady-state filtering, prediction error variance matrices and steady-state filtering
gain, respectively. Hence we have the corresponding steady-state values A and M(:) for

AG) and M(tjt+1), i.e.,

A=Pp'S', MG =(PP'Z'YVK, (i=1) (19)

From [ 1] we have P=(I,—KH)3. Hence from the symmetry of the variance matrices we
have P=3(I,—KH)"'. And substituting it into (19) yields

M@G) = [, — KH)'®"]'>7'K (20)

From Lemma 1 we have 3S7T'K=H'[ HSH"'4+R]™', and substituting it into (20) we have

(16). The proof is completed.

3 Wiener state estimators
Theorem 1. For the system of (1) and (2) with Assumptions 1~3, the asymptotically
stable Wiener state estimators with ARMA recursive form are given by

g x| t+ N) = Ka(gHDyG+ N) (21)
where
D For N<U0, Ky(g7H)=0"adj(I,—q¢ '¥HK (22)
ii) For N>0, KN(q_l)—adj(I —q 'V )OKqg " +Ly(g7))A(g™Y) (23)
Ly(g )= EZ[(I —KH)"®" 'HT[HSH"+R] ¢ ™ (24)
Proof, Substituting (I, —-qffq”) '=adj(I,—¥q ") /det(I,—¥q~ ") into (10), we
have
d(g x| t) = [adj(I, —qg ' ¥HK]y(®) (25)
i)For N<C0, from [ 1] we have
X(t | t+N)=d"x(t+N|t+ N) (26)
Substituting (25) into (26) leads to
g x| t+ N) = Vadj(l, —qg ' ¥, )Ky(t+ N) (27)

which means that (21) and (22) hold.
i1) For N>0, from Lemma 3 we have

x(t 1 t4+N)=xt | )+ Ly e+ N) (28)
where Ly (g7 ') is defined by (24). Noting (6), (7) and (10), (28) can be expressed as

(g x| t+ N) = [adj(I, —q ') Kqg ™" + Ly(g DA Jy(t + N) (29)
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which leads to that (21) and (23) hold. From Lemma 2 we have ¢(g™') to be stable,

hence the Wiener state estimators (21) are asymptotically stable. Applying the projection
property yields (21) to be steady-state optimal. The proof is completed.

4 Simulation example
Consider the system of (1) and (2) with Assumptions 1~3, where x(¢)={ x,(2),

() |7y w(t) and v(¢) are independent white noise with zero mean and variance Q=1,

R=10, respectively. x(0)=[0,0]", and

-1 O - I

o= o0g8l° '=|_os|w H=[1 1] (30)

The problem is to find the Wiener state smoother x(z|z+1).
By iteration tor Riccati equation (5), we obtain

- 3.9408 —0,1526° ~(0. 2640° - 2.9408 —0.3010"
== 1_0.1526 o0.7146 1 10.0392]° = —0.3010 0.6926 GD
From (21) we have the asymptotically stable Wiener state smoother as

plg x| t+1) = K (g Dyt + 1) (32)
where ¢(g7')=1-—1.4519¢ ' +0. 55759 ° is a stable polynomial, and

_ ~0.2291 — 0. 1484¢™" — 0. 0279¢™* -
Kila ) = 10,0134 4 0. 01504~ - 0. 0244472 | (33)
Respectively, we take two sets of different initial values:
The initial values (a):
PO D) =[-1,—1]"y x| 2)>=1{1 1} (34)
The initial values (b) .
x| 1) =1[10,10}", x*®(1|2) =[—10,—10]7 (35)

The simulation results are shown in Fig. 1 and Fig. 2, where the solid line denotes the

true value, the dashed line and dash dot line are the Wiener state smoothers x(¢|t+1) cor-
responding to the initial values (a) and (b), respectivelv, We see that the effect of the ini-

tial values (a) or (b) is gradually eliminated after a transition process, hence x(¢|t+1)

has the asymptotic stability. And x(¢{z+1) has a higher precision and the asymptotic opti-
mality,

x, ()Y, x, @ le+1)

0 100 ! Jstep 200 300 0 100 ! /step 200 300
x,(t)y ==w-Xx(t{t+1)(ntial values(a)) x,(t)y ----X,(t[t+1)(imnal values(a))
-+ =~ x,(¢|t+1)Gnitial values(b)) - =--x,(t[t+1)(imual values(b))
Fig.1 x,(¢t) and Wiener state smoother x,(t-+1) Fig.2 x,() and Wiener state smoother x,(t|t+1)

§ Conclusion
The relation between the Kalman filter and the Wiener filter is discovered in this pa-
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per. The unified Wiener state estimators with asymptoti¢ stability and optimality are pres-
ented. Comparing with other methods, they avoid the computations of the optimal initial
values, the pseudo-exchange and pseudo-inverse, and avoid the solution of Diophantine e-
quations, so that the computational burden can be reduced.
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