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Adaptive Control of Multivariable Systems with Unknown
Sign of the High Frequency Gain Matrix"
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Abstract A new adaptive control scheme is proposed for multivariable MRAC systems based on
the nonlinear backstepping approach in vector form, The assumption on a prior knowledge of the
high frequency gain matrix in the existing results is weakened and can be easily checked for certain
plants so that the proposed method is widely applicable, This control scheme guarantees the global
stability of the closed-loop system and makes the tracking error tend to be zero and quadratically
integrable.
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1 Introduction

The model reference adaptive control (MRAC) guarantees globally asymptotic stabili-
ty for linear time invariant multi-input and multi-output (MIMOQO) systems when there are
no uncertain dynamics and disturbances’~*. All the existing results are based on the line-
ar control design methods which require some auxiliary error signals. These design
schemes are usually complex when the generalized relative degree is greater than one. The
backstepping approach is very effective in dealing with nonlinear systems in parametric-
strict-feedback form"***! and it is also applicable to linear systems'®!. For linear MIMO a-
daptive control systems, the existing results using the above linear design schemes and
nonlinear backstepping approach usually require a known interacting polynomial matrix
P(s) and a known nonsingular matrix S, such that the high frequency gain matrix K, sati-
styies K, S,= (K, S,)"' >0. How to weaken this assumption is crucial in the adaptive
control design for multivariable systems. In [ 7], based on the nonlinear backstepping de-
sign scheme, an adaptive controller which guarantees the global stability of the closed-loop
system 1s proposed for MIMO systems, whose high frequency gain matrix is not necessari-
ly positive definite, but can be transformed into a lower or upper triangular matrix of
which the signs of diagonal elements are known. In{8,9], a design scheme using the SDU
or LDU factorization of the high frequency gain matrix K, is given but the signs of the
leading principal minors of K, are required to be known. In this paper, an adaptive control
design scheme for linear MIMO systems is proposed by using the backstepping approach in
vector form, and the high frequency gain matrix K,(or K,S,) is not required to be posi-
tive when the relative degree to be one, and the nonsingular matrix S, is not required to be
known when the relative degree is greater than one. In many cases, the assumption of
Hurwitz holds while the factorization K, = LDU is not available. The proposed control
scheme guarantees the global stability of the closed-loop systems and makes the tracking
error tend to be zero and quadratically integrable.

2 System description
Consider the following observable and controllable MIMOQO linear time-invariant plant
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y = G(s)u (1)

where G(s) i1s the m X m transfer function matrix, #(¢) € R™ and y(z) € R™ are the system
input and output respectively. The control objective 1s to design an adaptive controller
such that the output signal y(z) tracks asymptotically the output y, (¢) of a reference mod-
el y,, =W, (s)r where W, (s)and W' (s) are stable, and keeps all the signals in the closed-
loop bounded. In order to give a detailed error dynamic equation, the following lemma is
used.

Lemma 1-"°'. For strictly proper and full rank m X m transfer matrix G(s) ,there exists
an upper triangular polynomial matrix &, (s)such that limG(s)¢§,(s) =K, ,where K, is a

g

[10]

nonsingular matrix,and the elements on the diagonal of £,,(s)are monic Hurwitz polynomi-
als of certain degree.

For system (1) the following assumptions are made.

Assumption 1, The transmission zeros of G(s) have negative real parts.

Assumption 2. G(s) 1s strictly proper and full rank.

Assumption 3. An upper bound ¥, of the observability index v, of G(s) 1s known.

Assumption 4, There exists a known interacting polynomial matrix P(s) such that K,
=1limP(s)G(s), where K, 1s Hurwitz, otherwise there exists a known nonsingular matrix

L

S, such that K,S, is Hurwitz, Without loss of generality, let K, be Hurwitz in the latter
discussion. When the generalized relative degree of system (1) is greater than one, there
exists a positive definite matrix P (unknown) such that PK, is negative.

According to the Lemma 1 and the Assumption 4, £,(s) is full rank and &§,' (s) is sta-

ble. Let n* be the maximum order of the polynomials in &,(s) and d(s)=(s+a)" ,where
a >0 is a known constant. Define v=d(s)§.'(s)u. Then we have
u=25&,(s)d ' (s) ], umv (2)
y = G()E()EN (DU = dH(5)G()E,(s)v A d7(s)G(s)v (3)
Now the observability index of d7' (s)G(s) is ¥,+n" ,and the upper bound is v= ¥?,+n" .
Let the transfer matrix of the reference model be

W () = diag{1/(s+ @ o1/ (st )
and define the tracking error as
e(t) = y(t) —y, () (4)
In general, the zero strucrure at infinity of W, (s)is the same as that of G(s)"", i.e., K=
limW , (5§, (s) is finite and nonsingular. In this paper, the relative degree of the reterence model

§ O

1s the maximum degree of the polynomials in &, (s) so that it 1s possible that K=1mW, (5s)§, (s)

is singular. If in the transformation (2), d(s)§,.' (s) is proper, it is guaranteed that K=
imW,, (5)§, (s) is nonsingular.

g A

If G(s) is known,for system(3),by the MRAC method,one can choose a control law
" such that

y=d'()Gs)v' =W, (s)r=y,, (5)
v' =0T, 6 =[6," 6, 0, 0,1, w=[0f @ y r']" (6)
ai 952 6 Rm(v—l);*(m . ég 6 Rmb{m . éd —— K;l ,ml p— ;((Z;v, wZ = ;((i))y’ a)l ’mz 6_ Rm(v—l]

where Y(s)=[1 Is =« Is %", and p(s)=2A,+A, s+ -+ 57" is Hurwitz polynomial.
When G (s) is unknown, we use the adaptive control law v instead of v*. Then from the
plant and by matching Equations (3) and (5), we obtain the following output tracking error

dynamics''*

e=W, (K, [v—0"m] (7)
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3 Adaptive controller
In view of the form of W, (s) and (7), we obtain

é(t) =—ae(t) + K, —— 4+ K0 (8)
(S-'-Cl')ﬂ —1

() LI : V . : .
where — () =@(z). We deline A x,, then its state space realization to-

(s+a)" ! (s+a)» 7'
gether with (8) is denoted as follows

é(t) =—ae(t) + K,x,(t) + K, 0" (1)
-<,ft- — Xt (2-21!2!"'9??* _2) (9)
"'"fﬂ*""]. =—“ﬁlx1 __BZxZ Il * MR I S | +v

where 8,>0(i=1,2,++,n" —1)are the coefficients of the polynomial (s+a)* ~', and
0" = [01* 92an Gzinm]T! Kp — [Kpl sz K,f.m]# ‘P(f) — [991 Lyt ‘;Oznm]T
where 8 €¢ R" ,K,, &€ R", ¢, (i=1,,2mv) are scalar signals. Based on the backstepping

approach in the vector form, a controller will be designed by using the following transfor-
mation of variables

2, (t) = e(t)

zi(t) — xi(t)“‘_a:'—I(t) (1 = 142500 yn” — 1)
where @, () (1=0,1,*yn" —2) are referred to as intermediate control functions. The first
intermediate control function is taken as

(10)

&, (20,0" 1) = cozo — 0" (D P(D) (11)
where 8* is the estimation of 8* ,6* =8* —8* , from (9) and (10),we have
2o =— azo + o K,z + K21 — K, 6 T () @(t) (12)
The update law of 5,-* 1S given by
0; () =— @.(D2, (), (i = 1,2,++,2m0) (13)
With the transformations (10) for dynamics (9), we get
I, =X —0, =z, +a 8;0 — 2:5 (—azo + K,x; + K,0"@())— ;:ij ::T 9:: (14)

where K,0"' =60'=[6, 6, - 0, ] 07 (¢) and f(p are the estimations of K,0""and K, re-

spectively, and 0T (¢) =67 () — 6T, K, ()= f(F (t) — K,. Choose the second intermediate
control function as

2mv .

al(ZU v X7 ykp yé,t) —_ (C] +C;)Z1 f[ at % ; aé: T 9: +
o, r éT
321 (—azo +K,()x, +06" (D) o()) (15)
In general, the (£41)-th intermediate control function is taken as
5 oa o - A
ak(Z{] s X1 9" s X, 1Kp 9§9t) =~ Cii} —-sz + akt—l + :;;1 ( Az, —I—Kp(t)xl +8T(5)‘P(I) )—'—
0
] m O 2mv Q0
aak__l k—1 k—1
; ax;r X1+ ; akgtfkf'{—; aél.T ka"rfk +g“ cy > 0 (16)
O, = O0p1,; — X aak';l zk(?: = 1,2, ym)
0z,
\a (17)
Tei = Tpa,i — i k_lz,&(i — 1323"'92?71'0)

ozs
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m [ k-2 o .
: oa
fg — 2 EZLI - L ;i k:ljl
i=1 | j=1 aKg; 0z
(ks Sa. ) k=3 (18)
T T : ox,_,
— <y A 1
o= 2, Z oo on
For the last step n* , the adaptive control law v(¢) now is taken as
" oa oa
- ﬂ*“’ nﬂ-_ -~ -
() = D Bx, — (e + Dz + =570 2 (azo + K, (D3 0" (0 9(0)+
i— 1 2 29
n' —2 m aa . Zmu aa *
Y aan*-_g ) nooTe R =2
L AT X o] + Z A G, ;T E - T —1.i _l_fn*—l ‘I‘gn*—z (19)
i 1 X, P — 1 aKL i=1 08,1
m fﬂ*“-g aa “-.
T T d aan*—ﬁ' -
w1 — r e ~ NV R (20&)
; k JZ—; " OKT, Az,
2mu (n —3 aa 3
T d aan* —2
g.r_, = 21 o | P (20b)
! 2 | Zf T 06T 9%
aa R
G, 1, =0, 5, — X, — 5 Zn" (21a)
1, 2, ] ozt ]
oa, - _ . ,
rn*__l’l- == Tn*—ZI _GDI HT ZZH*_I(I — 1&21"'127??1)) (21b)
Oz,
The update laws are chosen as
. n 1
- oar
KPi — o-r:*--—l.:' — lei a;UTl Z;
— , |
- (i =1,2,+,2mv) (22)
- : oa,_
B:’ = T,* 1, =— Z@i . I'Zj

The above analysis can be summarized into the following theorem.
Theorem 1. For system (1) and the reference model (2), if Assumptions 1~4 holid,

then, given the adaptive control law v(2) =[v; (), v, (¢),*>*,v,(£) ] by (19) and the a-
daptive laws by (13) and (22), all the closed-loop signals are bounded and the tracking er-
ror e(t) converges to zero and belongs to L,.

4

Conclusion
This paper has proposed a new adaptive control scheme for linear multivariable

MRAC systems based on the vector form backstepping approach. This control scheme
guarantees the global stability of the closed loop systems and makes the tracking error tend
to be zero and quadratically integrable. We no longer require that there exist a known non-
singular matrix S, such that K,S,=(K,S,)' >0. For many classes of dynamic systems,
our proposed assumptions are easier to check than those in the literature.
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Appendix
The proof of the Theorem 1. Only consider the case that the generalized relative degree is greater than
one. Since in Assumption 4, K, is Hurwitz, and there exists a positive definite matrix P such that
K,P+ PK, =—Q

if taking a Lyapunov function candidate

Zmu
z, Pz, 1 20 TK.P 0 -

r=1

Vo =

we obtain that

Zmuv 2mvu 2my
~D 0 KIP68; =——>18;"(KIP+PK,) 8; = - 7 2.0:7Q8:

i=1

1s positive definite and so is V,. Since Q is positive definite , there exist constants l; (i=1,2,3)such that
2o Qzo = Ly %0 s 2o PK o210 << Lizg 20 + Lo 2] 2
In (11),let ¢y s >1, +c, where ¢, i1s positive constant, then

!

2my

1 -~ .
( > z, Pz, ) <~ CoZo 20 + 1221 2y — E 0 "K;Ppizo, V, <—cozlzo+ L2z (Al)
im1
For (14), we consider the following Lyapunov function
m 2mu
1 1 =1 1
V]_ r— V.:} Ii z z'1r11 2 ;KE,K;, I IZ; 0T (AZ)
From(14)and (Al)we have
m . imu N .
Vl '<"‘Cu7-u 2o — 1% 2, + 22 Z; + Z (Kpi — Oy;) + E GI'T(K;'—TH) (A3)
/<, B oa, = oa, -
where ¢; =141, ,615——x1,a TZ1(1 1,2, ym) 01, = — ¢, azg-zl(z——l 25, 2mv). In general, we choose
a Lyapunov functuion candidate as V,=V,_, % z:Z2, » then we have
k m . Zmu
Ve <— Doczlz + 2hozn + DKL Ky — 600 + D) 078, — 5,..) —
t =10 i=1 g=1
m k—2 aa . Zmu . (A4)
> (4 ) Ko o >_2(;=;:zm ;T-) 8, — 1.
The last Lyapunov function is taken as
Vor o =V* 5 4 % Z;:r* —1 & (A5)
Then we obtain
n” —1
Vo <— D calz (A6)

From (A5) and (A6), V. _, is bounded and =

'!n—l

Vn*_l(t)+J’ZCZZ < ﬂ*_l(O)

0

ThlS lmplles Z; (t) ELZ and Ep;‘ (I) GLm (£:1129 e gm) ' 2 (t) ELQ an (1:0;1 y **° yﬂ* _1) y and E;‘ (t) 351'. (t)
€L.(i=1,2,,2mv). It follows from z, € L., that e(¢) and y(¢) are bounded. Since u=G '(s)y, and
from(3)we have v=d(s)G™' (s) y where the relative degree of G(s) is zero (K, =1mG(s) =1lim G(s) &, (5)).

According to the assumptions, the transmission zeros of G(s) have negative real parts. This guarantees that
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for a>0,(s

a) " v=G"'(s)y is bounded. This illustrates that for a>>0, (s a) ’v(j==n" ) are bounded.

And thus— (s+a)* “'@=e is hounded. Since z, and 6 are bounded, it follows from (10) and (11) that
a,(t) and x, (¢t) are bounded. Using the same arguments, we can prove the boundness of &, (¢) and x; (¢).
Then each component of the control law 1in (19) is bounded and thus the adaptive control law v(z) is
bounded. From the transformation (2), u(z) is bounded. This means that all the closed-loop signals are
bounded. From (12), every element in z, 1s bounded, thus e(z) &€ L... Because it was proved in the previ-
ous that e(2) =z, ()€ L, [} L., we can conclude that the tracking error e(¢) converges to zero. The proof
of the theorem is completed.
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