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Robustness of the Design by Unlocking Unstable Zero-dynamics'"

WANG Guang-Xiong ZHANG Jing

(Department of Control Science and Engineering , Harbin Institute of Technology, Harbin 150001)
(E-mail; gxwang@ hope. hit. edu, ¢n)

Abstract The method of unlocking zero dynamics in output feedback control is analyzed. It is
pointed out that this method is based on the transformation of system configurations. By using a
series of transformations a stabilizing controller for an unstable plant can be rearranged to become

a controller for a non-minimum-phase plant. Although the stability of various configurations re-
mains unchanged, the robustness of the system is not the same, Detailed analysis of a typical non-
minimum-phase example is given.
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1 Introduction

Zero dynamics 1s a concept in nonlinear control theory. If the zero dynamics of a sys-
tem 1s asymptotically stable, the system is also called minimum phase. Zero dynamics gen-
erally appears in the feedback path of the system. As indicated in the nonlinear control
theory, the control law can be designed based on the feediorward part of the system only,
if the zero dynamics is asymptotically stable’’?. And most recent design methods for non-
linear systems rely on hypothesis that the zero dynamics of the controlled plant is asymp-
totically stable. Or, in other words these methods are suitable only for minimum phase
systems. In order to deal with non-minimum phase systems a new method by unlocking
the zero dynamics was proposed by Isidori*. It will be pointed out in this paper that al-
though this approach can stabilize the non-minimum phase plant, the non-minimum-phase
nature of the system remains unchanged and the final design may not be robust.

2 Control design by unlocking the zero dynamics

Consider a single-input/single-output linear system with no input-output feed-
through. Let n denote the dimension of its state space and let » denote its relative degree.
The system equations are as follows.

Z' — F.jz_'_G[}Il

T, = X2

ir—*l — T»

j:r — Hﬂz+a1I1 + v +ar—lxr—1 +arxr _'—bu

y = I (1)

where

z=F,z, z €& R""
1s the zero dynamics, which is assumed to be unstable in this paper. It can be seen from (1),
that zero dynamics forms a feedback loop in the system: x,—~>x;—>z—x,. The method for
locking the zero dynamics proposed in [ 3 ] consists of the following four design steps.
Step 1. Break down the zero-dynamics loop before x,, and insert a controller into the
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loop. This forms an auxiliary loop used only in this step.
The controlled plant of this closed-loop is called auxiliary plant P,(s), its input is z, ,

but here we relabel z, as u,. The feedback signal appeared on the right-hand side of the ,-
formula of (1) 1s the output of the auxiliary plant, 7. e., the output of P,(s) is

VYVa — HDZ+(Q1 +bh)I1 +"-+ar-lxr—1 +aruﬂ (2)
The object of this step 1s to design a controller of the form
n=Ln+My,
u, = N1 (3)

Step 2. By using an additional variable ¢ to modity controller (3) as follows.
n = Ln+ Mk(c— N7)
¢ = Ny —k(c— N1 + v, (4)
U, = ¢
As pointed out in [ 3], if £ 1s large enough, the unstable plant P,(s) can still be stabilized

by the modified controller (4).
Step 3. Reconstruct a new controller from (4), 1. e.,

N =I11n+Mki(x, — N)

U = %—(Nﬁ-ﬂk(l‘r—Nﬂ)) (5)

Now the input of this controller is x, and its output 1s just the input u of the original sys-
tem, Notice that from now on we restore our discussion with the original system (1),
Controller (5) takes the signal from the original systemn at point x, and feeds back to sys-
tem (1) at the control input u. So it is already a stabilizing controller for a plant with un-
stable zero dynamics. The only ditference 1s on the input of the controller——the input is
z, 1n this case.

Step 4. Take x, as the controller input and use the (» —1)th derivative of x; to replace
z, in (5). In practice, a “bench of rough differentiators” is used to give an appropriate es-
timate of x,.

The unlocking approach directly deals with the unstable poles of the zero-dynamics
loop, so the stability of the system i1s guaranteed. This design i1dea 1s further applied to
nonlinear systems as presented in | 3], where it is assumed that there exist a controller
similar to (3) and a Lyapunov function V(x,,1), where x,={z x; =+ x,-,] (As-
sumption 2 in [ 3 ]). Because the proposed Lyapunov function is independent of the un-
known vector-valued parameter p, the resulting design is robust. Notice that the system
configuration of the auxiliary loop in Stepl 1s different from that of the real system. Al-
though the nominal systems are both stable, the robustness of each design is not equiva-
lent. If the stability of the Stepl-design is robust, surely it does not mean that the final
design has the same robustness.

3 Design example

An inverted pendulum on a cart is a typical non-minimum phase system. Let M and m
be the masses of the cart and of the pendulum, respectively, [ the length of the pendulum.
And let ¢ denote the angle of the pendulum with respect to the vertical axis, x the distance
of the cart from a reference point, and u the horizontal force applied to the cart. Then the
linearized equations of the inverted pendulum can be expressed as follows.

(M4+m) i+ mill = u
4

-éumlzé +milx = mgll

By choosing appropriate state variables, the following state space equations can be ob-

(6)
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tained
21 = % 31:
1 — 2 4[ 2
: 3g
SV AS (7)
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Let M=0. 145kg, m=0. 03kg, {=0. 125m; then the transfer function from u to y=
x, has the form

5.715[(0.13s)% — 1]
s°[(0.1217s)% — 1]
(8) shows that this is an unstable non-minimum phase system, Now we use the unlocking
method to design the controller.

Step 1. Note that from (8) its relative degree r equals 2. Let A=—0.01. Then from
(1>(2) an auxiliary plant can be formed as

P (s) — Y, (s) _ 8.6188(s" +0.4478)

‘ U,(s) s(s+7.672)(s—7.672)

By using the classical method, the controller (3) of the auxiliary loop is obtained as
follows.

PI(S) — (8)

(9)

— 300(s + 6)
(s+50)(s—3)
The closed-loop poles of the auxiliary loop formed from P,(s) and K, (s) are
— 20. 55 +141. 32, —5.11, —0.39+:0, 70 (11)

And its Nyquist locus keeps an enough distance from the critical point (—1) (The Nyquist
plot is omitted), 1. e., the robustness of the design is quite well.

Step 2. By using an additional variable ¢, a modified controller K, (s) can be obtained
according to (4).

K1 (s) = (10)

(s—1.5x10°)(s+ 6)
(s +5000) (s +50) (s — 3)
where the value of 2 1n (4) 1s 5000. Now the closed-loop poles of the system made up of
K, (s) and P,(s) are

— 5000, 52, — 20, 29 + 141,45, —5.12, —0.394+10.70 (13)
And the auxiliary system is still stable.
Step 3. According to (5) an output feedback controller K;(s) is then constructed.
— 229511. 6967(s + 6. 216) (s — 0, 08017)
Rals) = (s —1.5 X 10°)(s+ 6 (14
The 1nput of the controller is x; from the original system. Now the plant is from u to z,,
which 1s closed by the K;(s). The closed-loop poles are the same as in Step 2, see (13).
Step 4. Shift the output of the plant to point x; and use an approximate derivative of
z, as the controller’'s input. Suppose, first, that the ideal derivative of x, is available.
Then we replace it by a rough derivative and examine the change in the system's behavior.
If the derivative i1s ideal, the transfer function of the controller can be directly ob-
tained from (14), namely sK; (s). But for this example an additional term of bhx; during
the design with (2) must be added to bu to form the required controller. Since bu-+bhx, =
b(u—+hx,), when we use x, as the feedback signal, the controller becomes
— 229511.6967(s+6.217)(s— 0. 2946)(s + 0. 2141)
Rals) =R 4h = (s—1.5 X 10°) (s + 6)
This controller 1s just the output-feedback controller for the non-minimum phase plant (8)

Kz(S) — (12)

(15)
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(if an ideal differentiator is available). The closed-loop poles of the output feedback loop
formed from (8) and (15) are still the same as in Steps 2 and 3. This is really the primary
idea of [ 3]: A stabilization controller for an unstable plant is transformed into an output-
feedback controller for a non-minimum plant via loop transformation. The closed-loop
poles of the system remain unchanged during the transformation.

An 1deal differentiator 1s unrealistic and, besides, the order of the numerator of K, (s)
is higher then that of the denominator, therefore a rough differentiator is needed to replace
the i1deal one. According to the algorithms given by [ 3], with rough differentiators the

controller of (15) 1s then modified as
Z

_. &9 _
Krg,(Q) == (S+g)2Kq(5') {—h (16)

It was pointed out in _3 | that if g is large enough, then P, of the equation(8) can be
stabilized by this K;. Let g=1000 1n this example. But it shows the system 1s unstable.
Increase g to 10*, the closed-loop poles in this case are 1.499X10°.,—19950. 797,47. 949,
—15.624+122. 308, —5.1299, and —0. 389+1:0. 697. The controller K: still can not stabi-
lize plant P,. Although as said in [ 3 that theoretically there exists a solution if g-—=oc, in

this case g°s in (16) has already reached 10°s, a value that numerical calculation error
might be considered, however the system is still unstable. So 1t is not a simple stability
problem, 1t 1s a typical robust problem.

4 Robust analysis

It must be mentioned that the method for unlocking the zero dynamics does not 1gnore
the robust consideration. When 1t 1s applied to nonlinear systems, it requires that the Lya-
punov function i1s independent of the unknown parameter p in order to make a robust de-
sign. Notice that the unlocking method is based on the loop transtformation. Theretore e-
ven though the closed-loop poles remain unchanged, the robustness 1s not equivalent after
the transformation. It is because the system configuration is changed.

Because the main concepts of [ 3] are established on the basis of linear systems, and
the robust theory for linear systems is well developed, we apply the results from [ 4 ] to ro-
bustness analysis of the example.

According to | 4], for robust analysis the system is first separated into a plant P(s)
and a controller K(s), and then if the uncertainty is multiplicative, we have the following
robust stability condition

ln(w) << o[I-=PK(w) '], Ywo=0 (17)
where /,, (@) is the upper limit of the multiplicative uncertainty, and ¢ denotes minimum
singular value. For SISO system, the frequency response 1s also the singular value plot.

For the auxiliary loop, the plant 1s P,(s) and the controller 1s K, (s). But after the
loop transformation, the nlant is the original non-mintiraum plant P, (s) and the controller
now is K,(s).

Although the characteristic equations of these loops are the same, their P and K both
are different. So according to (17), their robustness is ditferent from each other. For the
loop with K, and P;, its singular value plot of 1+ P, Gw) K, (w) 7! is shown in Fig. 1.
The smallest value of ¢ is approximately —50dB. This means that multiplicative uncertain-
ties as small as —50dB(approximately 0. 003) could produce instability. Such a lack of sta-
bility robustness can not be seen from the closed-loop pole test given by (11) and (13).
But it is clear if we use the Nyquist plot. The Nyquist plot of P, (jw) K, (jw) 1s very close
to the point (—1), this means that the design is really on the verge of instability. Because
of serious lack of robustness, the system becomes unstable when the differentiaior 1s re-
placed by a rough one as in (16). So it is not the problem of how large g must be, it really
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is a robust problem.
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Fig.1 Singular value Bode plot of o I+ (P, K,) ' ]

We will further examine the robust problem. Let the controller be K, , which is made
up of an ideal differentiator. Suppose now that the plant has a perturbation, 1. e., a small
additional term of damping D.x is added to the system, D, =0. 05kg/s. Closed-loop pole
analysis and impulse response simulation both show that the perturbed system is unstable.
Therefore, even if we can get a large enough g in the above mentioned design to stabilize
the system, the final design will be unstable if the real system is slightly different from the
design model.

5 Conclusions

The method for unlocking the zero dynamics is mainly based on loop transformations,
however the robustness of the system is not the same for different loop configurations.
Therefore, as in the inverted pendulum example, though the stability of the nominal sys-
tem can be guaranteed in design, it has no robustness.

The unstable zero of the inverted pendulum-cart system i1s close to its unstable pole,
so this example reflects the typical design difficulties for non-minimum phase systems. It
is clear that such non-minimum phase systems can not be stabilized by output feedback!®’.
Although the design idea of the unlocking method is different from all the traditional ap-
proaches, the conclusion is still the same it has no robustness. This fact has been ob-
served by Ishida ez al.'®!, who compared the state feedback with the H.. design (it is actu-
ally an output feedback design ) for an inverted pendulum-cart system. Simulation showed
that both designs were quite well. But experiments showed that only the state feedback
could stabilize the real plant and had a similar result as in simulation. It showed that the
real system with the H., controller was unstable. The authors of | 5] believed at that time
that it might be caused by the strong stabilization problem. In fact, from today's point, it
1s really a robust problem because of lack of robustness, the real system can not be
stabilized.
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