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Abstract Linear multivariable control systems disturbed by Gaussian stationary random se-
quences are investigated from the viewpoint of Shannon information theory. Relations between en-
tropy rate, mutual information rate of system variables and the H., entropy of closed-loop transfer
functions are derived using frequency domain calculation formulae of information rates. These re-
lations interpret the minimum entropy H.. control method and give time domain computing meth-
ods for information rates in terms of information theory. Our results introduce a new kind of in-
strument for further study of control systems in the framework of information theory.
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1 Introduction

The most important objective of feedback control system 1s to find an admissible con-
troller to reduce the uncertainty caused by perturbation or noise, and get acceptable per-
formance while keeping system stable. From the viewpoint ot information theory, any
control system can be considered as an information or uncertainty transmission channel.
Variables in systems whose uncertainty is described by extraneous random disturbance in-
puts are stochastic processes and can be characterized by probability measures. This makes
possible the application of Shannon information theory, which is also based on probability
theory, to the study of control systems "' ~*, Information theoretic method usually adopts
the measures of entropy or mutual information as performance functions of control sys-
terns, such as [ 1,3 ]. The common characteristic of these functions is that they describe
the uncertainty or information of a process at a certain time and thus reflect the transient
performance.

In the field of robust control, as a suboptimal design method, the so-called minimum
entropy H.. control theory has attracted a great deal of attention'*'*!. This method in-
cludes an unintuitive measure——the H.. entropy, which 1s different from the Shannon en-
tropy——as the performance index. It was pointed out that H., entropy is in fact an index
measuring the tradeoff between the H. optimality and the H, optimality'™. However, lit-
tle has been studied on the physical meaning of this measure 1n control systems.

With the time average property, the measures of information rates (such as entropy
rate and mutual information rate) in Shannon information theory describe the characteristic
of a stochastic process during its overall time evolution. In order to seek after the route ot
analyzing and designing control systems using information rates as performance functions,
the present paper studies connections between information rates and the H. entropy by in-
vestigating information or uncertain transmission in multivariable LTI systems disturbed
by (Gausslan) stationary processes. Some necessary concepts and lemmas will be stated in
Section 2. In Section 3, the relations between entropy rate, mutual information rate and

1) Supported by National Nataral Science Foundation of P, R. China (60084001)
Received September 2, 2002;in revised form August 11, 2003

WA 2002-09-02; WEMKRMA AR 2003-08-11




102 ACTA AUTOMATICA SINICA Vol. 30

the H., entropy will be formulated. These relations lead to the time domain computation
method for information rates, and interpret the H.. entropy in terms of information theo-
ry. Section 4 is the conclusion.

2 Concepts and lemmas
Let XT={x;sX2s***sZ,}s Yi={y1ry25°"»vy.) be sequences of discrete time stochastic

. . T3 : 1
processes x and y, respectively. The entropy rate'” of x is H(x) =lim,.« ;H (X7), de-

scribing the per unit time information or uncertainty of x, where H(X?) is the entropy of

X?. The mutual information rate'® of x and y is I(z; y) = limpe %I (X1;Y1), which

measures the average transmitted information between processes x and y, where I(X7;Y7)
i1s the mutual information of X7 and Y7.

Lemma 1. Let G(z) € RH.. be the m X m transfer function matrix of a discrete-time
MIMO LTI system, where RH., denotes the set of all stable and proper transter tunction
matrices, the stationary stochastic input x(k) € R"(k=0,1,2,++) has positive spectral
density @, (w). Then the entropy rate of system output y(&) € R” is

H(y) = H(x) A ;TJ" In | detG(e®) | dw (1)
where H(x) is the entropy rate of input. When x is Gaussian,
H(x) = %ln (Z2me)™ 417tr In det®, (w) dw (2)

Proof. See Appendix.

Lemma 2'*, Let two joint Gaussian stationary processes x(k) €ER", y(B) ER™, k=1
2,5+, have spectral densities @, and &,, (k) =[x" (k) y (k)] € R*"™ have spectral
density @,. Then the mutual information rate ot x(k), y(k) is
- 1 [, detd,(w)detd, (w)
(x5 y) = 47t,[-n-ln detd,(w) d
Let any transfer function G(z) satisfy [| G(2) || .« =sup.g[ G(e“) ]<A, where o de-

notes the maximum singular value; then the entropy of G(z) in H. control is defined
[4,5]
as

@ (3)

__ 12 frx :
H(G, A) = A j In det{ I —272G* (*)G(e™) |dw (4)

4 J—n
where G* (¢“) =G' (e7™). To distinguish it from Shannon entropy, we refer to function
(4) as the H. entropy.

3 Relations between information rates and the H.. entropy

The multivariable discrete time LTI system under study is shown in Fig. 1 where r,d,
yE€ R" are the reference input, disturbance and output, respectively. r(k).,d(k), £k=0,1,
2,+++ are mutually independent zero-mean Gaussian processes with spectral densities @, (w)
and @,(w). C(z) and P(z) are n X n proper transfer function matrices. The system is
well-posed and closed-loop stable.

— il

Y

Fig.1 LTI system with random disturbance
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Let L{(2)=PFP(z)C(z) denote the system open-loop transfer function. The output
closed-loop transfer functions are S(x)=[T+L(2) 7', T(x)=L(2)[I+L(2) ] ", respec-
tively, Then y(2)=T(2)r(2)+5(2)d(2), where y(2). r(z) and d(z) are the z-transfor-
mations of y, r and d, respectively. Let y, (2) =T (2)r(z),y,(z)=5(2)d(2),and the
spectral densities of y,,y, and y be ¢, (w), &, (w) and @, (w) ,respectively. Then, @, (w) =
TP ()T™ (), Py (w) =S(e*) P, (w)S" (e*), P, (w) =P, (w) + P, (w). The mutual
spectral densities of pairs (r,y) and (d,y) are @,, (w) =@, (w) T*(e*) ,®,, (w) =P, (w)S" (&),
respectively.

3.1 Entropy rate and mutual information rate

The mutual information rate of disturbance d and output y in Fig. 1 is I(d;y), which
measures the information of one variable contained in another. For the purpose of disturb-
ance rejection, the system should be designed to make I(d;y) as small as possible.

Theorem 1. The mutual information rate of disturbance d and output y in Fig. 1 is

I(d;y) = H(y) — H(y,) (5)
where H(y), H(y,) are entropy rates of y and y,, respectively.

Proof. et £ (k) = [ d" (k) y' (k)]'. The spectrum of & (k) is &, =
[@d(w) d,, (w)

o () @, () ], then det®:(w) =det®d,(w)detd, (w). From Lemma 2,

- 1 & det @, (w)det D, (w) B _1_[”‘ det P, (w)

Id; y) = 47, ﬁ_nln det @:(w) dar == 47 _nln det d, (w) de (6)
From l.emma 1,

I{d;y) = A—}_}_—J“ [ In det®, (w) — In det @, («) [dw = H(y) — H(y,) [ ]

Note 1. The output y consists of two parts: The signal y, transmitted from reference,
and y, transmitted from disturbance. H (y) measures the total uncertainty of output,
while H(y,) is the information concerning the reference obtained by output. The aim of
system design is to make y track reference signal r and reject disturbance d. For H(y) =
[{(d;y)+HC(y,), it will rossibly make the output *lose’ the information of reference if we
adopt H(y) as the minimizing function in this case. Under this consideration, a rational
selection is to make H(y) constrained by a certain bound (Based on the relation between
entropy rate and variance'”*, this bound corresponds to a variance bound of output. ), and
make H(y,) achieve its maximum. From (5), when H(y) is bounded, the smaller I(d;y)
15, the larger H(y,) is. Hence, Theorem 1 demonstrates that, as a measure of disturbance
rejection, [(d;y) reflects the tracking performance in the meantime.

3.2 Mutual information rate and H.. entropy

y and d are Gaussian stationary processes for the system i1s closed-loop stable. From
the spectral factorization theorem of multidimensional stationary processt®™, there exist
n X n rational matrices F_(z) and F,(z), with zeros and poles of det F,(2) and det F,(2)
all inside the unit circle, so that @ (w)=F_ (“)F} (), ®,(w)=F,;(e“)F] (&“).

et y and d be transformed by nonsingular functions F, ' (2) and F, ' (2), respec-
tively, i.e., yY(2)=F;"{(2)y(z), d' (2)=F;'"(2)d(z). Then the spectrum of & () =

(d'"(z) ¥y T ()" 18 P (w)= FM* l(’é’im) M(Ie ) , where M(z) & KRH.., and

M(e*) = F;l(e””)@d},(cu)[F; (e“) 7' = F; (&")S" (") F; (e) | (7)
From lLemma 2.

N _L"‘ﬂ det@df((g)q}yf(w) —*1J“ o * 7w i
IH{d ;y ) = . In dei D () dew = i In det| I — M"* (¢“)M(e“) ldw (8)

It 1s known that the mutual nformation is invariant under nonsingular transforma-
tion'” ', thus

— T
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I(d;y) = ';ﬂl I detlT— M* (e")M(e™) Jdo (9)
Because @, (0) =@, (0) + &, (0) =P, (w), || M(2) || U || M(2) =1, it is
known from equation (9) that I(d;y)=+oo. From Theorem 1, I(d;y)=H(y)—H(y,).
The entropy rate of Gaussian stationary process always exists, i. e., both H(y) and H(y,)
are smaller than +oo, I(d;y)<{+oo. Hence
| M(=2) || o< 1 (10)
Note that the right side of (9) is exactly the H.. entropy of transter matrix M under condi-
tion (10). Denote 1t as

H(M,1) = ':1_‘“1 " In det[ I — M* (¢*)M(e™) Jdw (11)
Let C"={c€(C, |c}| <1 }. For A€ R"*", let sp(A) denote the set of eigenvalues of
A. Suppose the transfer matrix M(z) has a state space realization, 1. e.,
M(z) = C(zI —A)Y'B+ D, sp(A) C C (12)
From the results of Stoorvogel and Van Schuppen'?, when || M(2) ||.. <1, the equation

Q=ATQA+C'C+ (ATQB+C"D)E'(B"QA +D"0C), Q=Q" >0,

E=1—-B'"QB—D'D>0, sp(A+BE ' (BT"QA +D'C)) C C (13)
has a unique solution Q&€ R**", and
H(M,1) =— —In det(I — B'QB — D" D) (14)

Based on the above analysis, the following conclusion is derived.
Theorem 2. For the system shown in Fig. 1, the mutual information rate of disturb-
ance d and output y is equivalent to the H.. entropy of transfer matrix M described by (7),

Id; y) = HM,1) (15)
Suppose M has a state space realization described by (12). Then
1d; y) = ; In det(I — B'"QB — D' D) (16)

Note 2. It is known from (6) that I(d;y) is defined by system closed-loop transfer
functions and inputs r and d. From (7), system M characterized by H(M,1) is also de-
tined by closed-loop transier functions and inputs of the original system. Furthermore,
(15) reflects the equivalence between these two performance functions, while (16) gives a
time domain computation method of mutual information rate.

Note 3. H(y) is the total information (uncertainty) of y, while H(y,) describes the
information about r obtained by system output. Hence, (5) and (15) demonstrate that the
H._. entropy retlects the average uncertainty caused by disturbance in the sense of informa-
tion theory.

Note 4. The minimum entropy H. control method is to find an admissible controller
to minimize the H.. entropy of system when the H.. norm of system closed-loop transfer
function 1s bounded. It can be seen from Theorem 2 that minimizing the H. entropy of
system M (|| M(2) || .<C1) is equivalent to making the ‘pollution’ on the system caused
by disturbance be minimal, i. e., it is equivalent to minimizing I(d; y) when H (y) is
bounded.

The relation between mutual information rate and H.. entropy in parameter identifica-
tion problem was studied by Stoorvogel and Schuppen'?. [2] focused on the mutual infor-
mation rate between estimation error and a canonical reference signal, while we focus on
the mutual information rate between variables of control system itself.

3.3 Entropy rate and H.. entropy
Suppose r has spectral factorization @, (w) =F,(e“)F,; (). Let
N(“) = F; (e“)T" (e*) F} (*) | (17)
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Then N(2) € RH... Because
In det®, (w)| det®; (w) |7' =—In det{F,;' (“)T(e“)D,(w)T* (“)[F! (*) ]!}
from (6), it follows that

Id;y) = HM,1) = :_—I-Jn In det| N* (&“)N(e*) |dw = __1-[“ In | det N(e*) |*dw

ir J = 47 ) _«

Suppose system N (z) is driven by a standard Gaussian white noise (with spectrum
I}, and the output 1s z(k). Then from Lemma 1,
1 1

A7) —x

H(z) = %ln(h:e)“ |

In | det N(e*) [*dw
Hence,
H(M,1) = I(d; y) = '—%-ln(Zﬂ'a)" — H(z) (18)

Suppose, when driven by a standard Gaussian white noise, the output of system M(z2)
1s wl(k). From (7) and (17) we get

M* (OM(2) + N* ()N(z) = I, |IN®@I|.<1 (19)
Then, it can also be concluded from (19) and Lemma 1 that
H(N,1) = —;—ln(Zﬂe)" — H(w) (20)

Note 5. It can be seen from (17) and Lemma 1 that H(z) is an alternative measure of
the information difference between y and y,. Similarly, (7) and Lemma 1 demonstrate that
H(w) reflects the information difference between y and y,. Hence, (18) and (20) also
give information theoretic interpretations for the H. entropy.

For general consideration, suppose an arbitrary n > n transfer function matrix U(z) &
RH.., ||U(2) || .<<7Y. Then there is a spectral factorization V() € RH.., || V(2) || . <1,
so that''!

[—7U" (2)U(2) = V" ()V{(z) (21)
The following conclusion can be derived directly from lLemma 1.

Theorem 3. Suppose, when driven by a standard Gaussian white noise (with spectrum
1), the outputs of systems U(z) and V(z) are gg(k)and v(%k), respectively. Then the fol-
lowing relations between systems U(z) and V(2) hold:

HWU,y) = 7 _%ln(Zne)" —Hw) (22)

h—

HV,1) = -é—ln(ZneY)" — Hw) (23)

where H(U,¥) and H(V,1) are the H.. entropies of systems U(z) and V(z), respective-
ly, H(u) and H(v) are the entropy rates of g(k)and v(k), respectively.

Note 6. Theorem 3 formulates relations between entropy rate and the H. entropy,
and a time domain computation method for entropy rate along with (14). The relations de-
scribed by (18) and (20) are special cases of Theorem 3.

Note 7. Because Theorem 3 is derived based on Lemma 1, 1t can be extended to the
case of arbitrary stationary inputs.

4 Conclusion
Information rates (such as entropy rate and mutual information rate) measure the ave-

rage uncertainty or information of system variables, and thus can be considered as per-
formance functions of control system during its overall time evolution. However, the limi-
tation of computation in frequency domain prevents us from getting more applicable results
for system analysis and design by using this theoretic method. The present results demon-
strate the informational description properties of the H.. entropy, and make it possible to
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discuss the entropy rate and mutual information rate ol system variables in state space,
and hence provide useful instruments for further research.
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Appendix
Proof of Lemma 1.
This lemma had been proved in the case of m=1 in [12]. However, so far as the authors know, it has
not been proved for multivariable systems. We give the proof here.
Firstly, we suppose x 1s a Gaussian process. Let x*={x;, ***, x,} be a sequence of x. Define a block
Toeplitz matrix, To» ={Q(—k&) ] ;4= _n .~1.0.1,--.ns Where Q(j—k) € R"*™ is the covariance matrix of x.
Then the entropy of x" is

H(z") = —--In(2xe)™ + —In det T

From the Szegé theorem of Toeplitz matrixt?!,

lim, ... [ det T, ]11? = exp 21_11:,[“ In det®, (@) dw
Then the entropy rate of x is

H(x) = —In 2re)™ + — | In det®, (w)dw

2 4} =

For the same reason, the entropy rate of vy is

_ 1 [~

e o
H{y) 5 In (2me)™ A o _ﬂln det P, (w) dw

Because @, (w) =G(*) P, (0)G" (*),

H(y) = H(x) A zlﬂJ'“ In | detG(e®) | dw
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Secondly, let the input be an arbitrary stationary process. Suppose the sequence of output {y,, **+, vy,
1s a linear transformation of the sequence of input {x,, =+, z,}. Let J(x,, =**, x,) be the Jacobian matrix
of this transformation. For G(z) is linear, J(x;, ***, x,) has a unique inverse, A=detJ(xy, ***, x,)F#0,
and A does not depend on z;(:=1,2,--,n). Then,

H(y,y vy v,) = H(xyy *, x,) + Ko (Al)
where K, =In|A| is a constant that depends only on the coefficients of the transformation. When the trans-
formation matrix is of infinite order, the process vy depends linearly on x as

Mi = szxh-k& L == Xa, "vry OO
k=10
Extending equation (Al) to the case of infinitely many variables, we conclude that
H(y) = H(x) + K
where again K 1s a constant that depends only on the parameters of system ((z). As we have seen, when x
is Gaussian, K equals the integral in {(1). And since K is independent of x, it must equal that integral for

arbitrary z. L
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