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Abstract The notion of control Lyapunov functions(CLF), originated from relaxed controls, is
newly understood as the characterization of zero-state detectability property, thus the difference
between the Sontag-type control' and the passivity-based controller is clarified accordingly.
Then, based on a CLF under appropriate conditions, a Sontag-type stabilizer is designed for a
class of typical cascaded systems which have ever been stabilized by passivity-based controllers,
Furthermore, based on an input-to-state stable CLF under appropriate conditions, a Sontag-type
input-to-state stabilizer is designed for this kind of cascaded systems with perturbation.,
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1 Introduction

The control Lyapunov function (CLF) of affine systems, often combined with Sontag's
formulat’!, has been playing an important role in stabilization designs'*~*!, and the notion
of zero-state-detectability'®®! is also a central concept in current stabilization research. In
fact, the two notions are closely related, the CLF 1s just a characterization of zero-state-
detectability property of a specified state-output system.

To investigate the application of the CLF, we will address the robust stabilization
problem of a class of typical cascaded systems. Although these systems have been dis-
cussed in many references such as [ 7,8 ] and have been given passivity-based controllers,
we intend to design CLFs-based controllers. Noting that the energy function in [ 7,8] is al-
so the CLF of this kind of cascaded systems, we will design a Sontag-type stabilizer, Fur-
ther, we consider this kind of cascaded system with perturbation, prescribe corresponding
constrains so that the preceding CLF becomes the input-to-state stable CLF (ISS-CLF),
and accordingly design a Sontag-type input-to-state stabilizer. It deserves to be remarked
that the input-to-state stabilization design is more significant than the stabilization design,
since the former implies that the closed-loop is globally asymptotically stable, and is also
capable of attenuating disturbance.

2 [Essentials to the CLF

In this section, we reveal essentials of the CLF from several aspects. In particular,
we point out that the CLF 1s just a characterization of zero-state-detectability property,
and consequently compare the Sontag-type controller with the passivity-based controller.

Consider the affine system

X = f(x)+gx)u, x€R',ue& R", f(0) =0 (1)

We will pay attention to the following state-output system later, which is related to

some C' positive definite and radially-unbounded energy function V.
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x = f(x), y=[L V)] (2)
Here L, V(x) :=(0V/0x)g(x).V being positive definite implies V(x) >0 for all x,V(x) =
0=x=0; V being radially-unbounded implies V(x)-—>o0 as |x|—oo. From now on we
always assume an energy function to be C' positive definite and radially-unbounded.

Definition 1 /. An energy function V is said to be a control Lyapunov function (CLF)
of (1) 1

Vx#0, [ LVx)] =0=>L,V(x) <0
Now, we point out the difference between the CLF characterized by Definition 1 and

the CLF characterized by some Riccati-like inequalities. 1t is easy to test that V is a CLF of
(1) it

Vx#0, L, V(x)— |LV(x)|" <0, p =0 (3)
Actually, the CLF satisfying (3) does exist. For instance, consider a system
Il :""'.I'l—i—l'-r (1+3I1)(_I1+I2)+H
With W=2V+3V*+43V?, V:—%(If—f—r%) as an energy function, we get

LW(x)=((2+6V+IV)|—xf —3xix, + (1 + 32525 ], LW(x)=(Q2+6V+9I9V)z,
[t 1s easy to * for all x40. In fact, when x,7%0 we get
— x] —3xix, + (1 4+ 3x3)x; < %ﬁx% + 3xix; + x5 <
(1 +6V+9V)x; << (246V 4+ 9V*)xs
When £, =0 but x;7#0, we get —zi —3xix, + (1432} x; < (24+6V+9V?) x5,
However, that system (2) has a CLF V does not imply that there exists a Riccati-like

inequality as (3). For instance, consider the tollowing system

Ty =— Loy Tp = X, + UL, (4)
V(x)=x%—x,x;,+ x5 can be proved to be a CLF of (4). Here
LV(x)=(—x +2x)x:y» L/ V(x)=2x;— xi
“VYx#0,L,V(x)=0" includes “z, =0, x,7%0” and “x =2x,7%0”. Now we have
x: =0, 1) Z0=>L,V(x) =— 2] <03 xr, = 21, Z 0=L,V(x) =— 3x; <0
Hence V(x)=x{ —x,2, + x5 is a CLF of (4). However, there is some x7#0, for instance,

(I1 !IQ):( é ’ i ) SUCh that LfV(.r)”" ‘LEV(X) ‘2>O

The discussion above actually indicates that having a CLF V characterized by Riccati-
like inequalities (3) implies that system (1) possesses stronger stabilizability properties,
and that a simple control law u=—[L_ V(x) |  is a stabilizer. However, based on CLF V
characterized as Definition 1, the complicated law called Sontag-type control is needed for
stabilization:

(a(x) + Va* (x) + [b(x) [*
u(x) =— P(x)b, P(x) =+ b(x) | ,» b(x) #£0

LC s b(x) =20
Here ¢>0,a(x)=L , V(x),b(x)=[L,V(x)]".

Lemma 1-*. Sontag-type control (5) is an optimal stabilizer of (1) with respect to the
following cost functions:

(5)

wulde . L(x) — ;-P(x)b(x)Tb(x)-—-a(x)

- { 1
) = JU‘(") T OP(x)

and this control law ts continuous in R*\{0};.
Now we point out that the CLF is just a characterization of the zero-state-detectability

property.
Definition 2-°'%/, A state-output system



432 ACTA AUTOMATICA SINICA Vol. 30

x= f(x), y=hx), xR, ye R, f(0) =0, hQ)=20
is said to be zero-state detectable (ZSD) if for all x, € R",
V>0, h(x(t;x,)) =0= limx(¢t;3x,) = 0

§—= O

and is said to be zero-state observable (ZSO) if for all x, € R",

Vi=0, hix(t;x,)) = 0=>x(t5%x,) = 0
Here x(t;x,)1s the solution of the state-output system, x, is the initial condition. Obvi-
ously, a ZSO system must be a ZSD system.

According to Definitions 1 and 2, system (1) having a CLFV 1mplies actually that
system (2) 1s ZSD.

Due to this observation, and if putting aside the continuity problem of control laws,
we can define a class of special CLF, based on which Sontag-type control is a stabilizer of
system (1).

Definition 1°. An energy function V is said to be a CLF of system (1) if system (2) 1s
ZS0.

Based on such a CLF, the Sontag-type control 1s indeed a stabilizer, since we have

V(I) — »\/I:LfV(x)jz _I_ |L3V(x) |f1 ’ E —_ {x ‘ V(l} — O} — {O}
Observing that the following limit does not exist necessarily, we can not ensure the
Sontag-type control is continuous with regard to L,V (x), let alone x& R"\{0}.

2 T
lim  w(x) = lim LV [PL V) ]
| L V() | =0 | L V(x) [ =0 \/(LfV(x))Z 4 ‘LEV(I) ‘4 L LfV(x)
However, the Sontag-type control based on the CLF characterized by Definite 1% is
possible to be continuous., For instance, consider the system

%Iz)‘f—u (6)

With V(x) =x%+x; as an energy function, we have a state-output system

"

j,'lzng j:g =—€2(I1 :

fi‘l — A2
£

;Iz ) s Y = LgV(x) = 2.1,’2
which is ZSO. So V(x) =x{+ x5 is a CLF of (6) in terms of Definite 1* , though we only
getV x20, L,V(x)=0=>L,V(x)=0, where L, V(x)=ux; 2x,p—¢€2), p=(1—¢€"2)/x,.
Moreover, the corresponding Sontag-type control

1

U = 2.1?2(213113——-6"’2 + /4 p? — Az, pe*r + €2 + 16)
1s obviously continuous.

Finally, we clarity simply the difference between the CLF-based design and the pas-
sivity-based design. Based on the ZSD precondition (CLF), the Sontag-type control be-
comes a universal stabilizer of system (1). If the additional condition that the unforced dy-
namics of (1) 1s critical-stable is provided, a simple passivity-based controller is obtained.

Assumption 1. System (2) 1s ZSD; L, V(x)<0, ¥ x&ER".

Lemma 2*), If Assumption 1 holds, then the system x = f(x) —g(x)[L,V(x)]" is
globally asymptotically stable, 7. e.,u=—[L,V(x) ' stabilizes system (1).

i’z —— g2 (-131 ;

3 CLFs in robust stabilization of cascaded systems

A class ot typical cascaded systems have been discussed in many references such as
| 7,8], here we continue to study the robust stabilization problem of this kind of cascaded
systems. Based on a CLF under appropriate conditions, we design firstly a Sontag-type
stabilizer, which is different from the one in [ 7]. Then for this kind of cascaded systems
with perturbation, we design a Sontag-type input-to-state stabilizer, based on an input-to-
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state stable CLF (ISS-CLF) under appropriate conditions.
Consider the cascaded system

x, = flx,,2;) . :
I-e.!x: (

J(x; 9I2))+ (O

; ])u t— F(x) +G(x)u (7)

To = U

where (x{,x,) € R" XR.

Assumption 2A. There exist a C' function v,v(0) =0 and an energy function V such
that Lyex ivix ) V(x1)<<O, for all x, 0.

Assumption 2B. f€ C', as a result, there exists a function M such that

f(x192) — f(x;yv(x1)) = (x, —v(x)))M(x, vz vv(x:))s V(x,,2,) € R,

Lemma 3'"1, If Assumptions 2A and 2B hold, then the following continuous control
law stabilizes system (7).

o

a.rl

Theorem 1. If Assumption 2A holds, Sontag-type control (5) i1s an optimal stabilizer
Of (7). Here G(I) :Lf("rl __IZ)V(xl ) — (Iz "‘"'Ez‘(xl ))aava(rl + o ) n‘.’?(x) = _""U(x1 ).
i

1
2

LFW(JC) — LI(II_IZ)V(xl) — (xg - 'U(xl)) %‘f(xl 1-172)9 LGW(x) — Xy — 'U(xl)
l

“0(0)=0,x7#0 and L;W{(x)=0" imply “x, =v(x,),x,3%40”, and thus
Vx#0,LcW(x) = 0=LeW(x) = Ly vz, V(x) <O,

Hence W is a CLF of system (7). In terms of Lemma 1, Sontag-type control (5) based on
W 1s an optimal stabilizer of (7). —

Remark 1. Lemma 3 uses the C' regularity of f and v, and [ 8] even points out that
[Lemma 3 does not hold if f i1s only continuous. However, Theorem 1 shows that the Son-
tag-type control is a stabilizer without the condition f€ C".

The controller in Lemma 3 is obviously simpler and smoother than the one in Theorem 1.
Why? The former i1s obtained by using passivity theory (Lemma 2), the following is a
brief explanation.

U

f(xl y XLy ) — LM(II,:Z*H(I}})V(M ) — (x; — ‘U(xl)) (8)

Proof. Setting an energy function W(x, ,z;) =V (x,)+=(x,—v(x,))*, we get

Setting initially “:g?: JCx1022) — Ltie vzy vz VX)) + 2, we have
1
f(x1 !Iz) (0 R N
F T 2% a2 — L,y VD | T )7 i=Fo +6oz
 OX ,,
1

With W(x)=V(x,) >

LW (x) = Ly v n VX)) <0, LeW(x) = 2 — vlx))
and the state-output system ¥ =F(x),y=Le:W(x) =1z, —v(x,) is ZSD. In fact,
Ve=0,Vx#0, y=0=>L:W(x) = La. vir,nV(x) <O
Thus, by Lemma 2 it 1s not hard to obtain stabilizer (&).
Now we come to input-to-state to stabilize the preceding cascaded systems with per-
turbation:
X, = f(x,,1;,d) : f(x,,x;,d) 0
e k= | i )+ (5

(x,—wv(x;) )" as an energy function, we get

)u :— F(x,d) +G(x)u (9)

.i‘z — U
where(xy , 0, ) E R" XR,dE R’

Lemma 4%/, The system x = f(x,u),xE R",u€ R™ is input-to-state stable (ISS) if
and only if there is an energy function V such that | x| =p(|ul]) 06 Keo=>L .., V(x)<<0.

Thereafter, the control law u=a(x) is said to ISS stabilize the system x=f(x,u), if
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x=f(x,a(x)+v) 1s ISS with respect to v.
Definition 3. Consider the affine system with perturbation
x= f(x,d)+g(NDu, x€e R",ue R",d &€ R*, f(0,0) =0 (10)
An energy function V is said to be an ISS-CLF of (10) if
(x,d) || x|=p(|d ), L,V(x) =0,0€ K. }= sup LicaoV(x) = w(x) <0,

de {d||d|<p! (Ix]))
Lemma 5. If V is an ISS-CLF of system (10), then the following Sontag-type control
Input-to-state stabilizes system (10),

o+ V[P [ ]
k(x) = ya ‘b(x) ‘2 b(x), b(x) = 0

0 b(x) =0
where w(x) refers to the above formula, b(x)=[L,V(x)]" .

Proof. Suppose|x|=p(|d]).

Case (i). [L,V(x)]'50. Calculating the time derivative of V along the solutions of
the closed-loop, we have

1% =Liz.a V(X) —w— \/| "-’]2 T ‘L:;V(x) ‘4
< Sup LicaoV(x) —w— \/lez + \LEV(x) |'{1

de{d)|d|<F !t (|x})}

=— ]w|*+ LV ]* <0
Case (i1). [L,V(x)]"'=0. According to the definition of ISS-CLF, we get

v = Lf(_.,_d)V(x) g; Sup Lf(x,d)V(x) = < 0.

de (dildi<<o? (|x}))

Therefore, | x| >p(|d| )=V <0. By Lemma 4, the closed-loop is ISS with respect to d.

(11)

Now we design the input-to-state stabilizer of (9) by using Lemma 5.
Assumption 3. A C' control law v(x;),v(0) =0 input-to-state stabilizes system x, =
f(x,,x;,,d), that is, there exists an energy function V (x;) such that sup

de (d||d1<e ! (xy D}
Lyce v, VX)) t=wo(x,)<0.
Theorem 2. If Assumption 3 holds, then the Sontag-type control (11) input-to-state
stabilizes system (9). Here w(x)=&(x;), b(x)=x,—v(x;).

Proof. It is known that

LFW(I) = Lﬂxl,xz,d)V(xl) — (.I?z — ‘U(X1)) %f(xl o 7 1d) ’ LGW(I) — XTp — 'U(xl).
1

Noting that v€C',v(0)=0=>FJkE Ko » | x| =+ |3 |2+ |v(x:) [<k(]|x, |, it fol-
lows that

| x[=xrop(|d]):=rv(|d])=>|x, | = p(|d])
Hence, |x|=7(|d|),LcW(x)=0 implies | x; | =p(|d]|),z,=v(x;), and then
|x‘ _,_>,.'-— 7( ‘d‘ ) ’ L(;W(x) = O:}LFW(J:) — Lf(xl,v(xl),d)V(xl)

é SU.p Lf(xl,v(xl)gd)v(xl) ' = C:"(xl) < O

de{d{)d|<p ' (x; 1))

S0, W(x)=V(x;) +% (x; —v(x;))? is an ISS-CLF of system (9). By Lemma 5 the result

1S proved.

4 Conclusions

Due to Sontag's formula, the existence of CLFs implies affine systems are stabilizable.
For a class of typical cascaded systems, based on a CLF under appropriate conditions we
have designed a stabilizer which is different from the passivity-based controller. Similarly,
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due to Sontag’s formula, the existence of ISS-CLFs implies affine systems with perturba-
tion are input-to-state stabilizable, For the preceding cascaded system with perturbation,
based on an ISS-CLF under appropriate conditions we have designed an input-to-state sta-
bilizer.
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