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Simultaneous Stabilization for Singularly Perturbed Systems
via Iterative Linear Matrix Inequalities®
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Abstract This paper investigates simultaneous stabilization of several linear singularly perturbed
systems using a single linear state feedback controller. Simultaneous stability conditions for the
singularly perturbed systems are derived and represented in terms of a set of matrix inequalities,
and the stiff problem is avoided since the design procedure is independent of the small parameter.
By the proposed two-stage procedure, the stable simultaneous feedback gains and Lyapunov func-
tions can be found. The outcome of the simultaneous stabilization problem is recast into a set of
bilinear matrix inequalities (BMIs) in each stage. The resulting BMIs can be effectively solved by
the proposed iterative linear matrix inequality (ILMI) approach. The convergence of the algo-
rithms is also investigated. The algorithms can be used for both standard and nonstandard singu-
larly perturbed systems. Furthermore, numerical examples and simulation results are given to
verily the effectiveness of the algorithms.
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1 Introduction

Many plants involve physical and chemical phenomena of different time scales, such as
complex circuits, flexible-joint manipulators, flexible-link robots, communication net-
works, etc. The resulting stiff problem makes the analysis and synthesis very difficult,
Fortunately, singular perturbation theory i1s proven to be a successful analytic tool for
modeling, analysis and synthesis of well-conditioned controllers for multiple time-scale
plants. By this method, slow and fast variables can be separated explicitly due to the small
perturbed parameter, and the controllers can be designed according to different time scales
to avoid the stiff problem. For more details on recent development of application and tech-
niques of singular perturbation in control, see { 1,2 ] and the references therein.

The feedback control of linear singularly perturbed system has been extensively stud-
ied in the literature via the slow-fast decomposition method. Loosely speaking, the re-
search approaches can be divided into two categories, one is so-called classical decomposi-
tion, where the slow subsystem is viewed as a regular state-space form, but the nonstan-
dard singularly system is difficult to dealt with. The other 1s descriptor system ap-
proach**!, which is suitable for both standard and nonstandard singularly perturbed sys-
tems. Forall of the above mentioned methods, the Riccati equation 1s utilized as the main
solver and the famous implicit function theorem acts as the theoretic basis. As an alterna-
tive to Riccati equation, linear matrix inequalities (LMIs)"®) have emerged as a powerful
formulation and design technique for a variety of singularly perturbed control prob-
lems *8,

On the other hand, simultaneous stabilization i1s an important problem in the area of
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robust control design. Simultaneous stabilization via state feedback control has been stud-
ied, such as in [9]. Recently, [10] proposed an iterative LMIs (ILMIs) approach to rea-
lize the simultaneous stabilization via static output feedback. However, there is no related
result about singularly perturbed systems.

2 Simultaneous stabilization for linear singularly perturbed systems
Consider r singularly perturbed plants G

x = AL x+ ALz+ Biu, x(0) = x,
e = ALy x+ A,z+ Biu, z(0) = z,
where x(t) €ER", z(t)ER™, u(zt)€e R?, A}, , A% A AL, By, B, are constant matrices of
appropriate dimensions, The problem we need address in this section is to design a single
linear state feedback control law u= K, x4+ K,z to make the r closed-loop singularly per-

Gi: Z.:].g 2;"'17’ (].)

turbed systems G
x = (A1 + BiK)x+ (Aj; + BiK;)z
ez = (A} + B:?Kl)x+ (Af'fz +B§K2)Z
simultaneously stabilized.

Theorem 1. 1f there exist matrices P', K, and K, with compatible dimensions satisfy-
ing the matrix inequalities;
- Di 0 -

G::-: 1t =1, 2y, r (2)

P: = P? p J,Where Pi, = (Pi)T > 0,Pi, = (P,)T > 0 (3)
- 21 27
II' = i ifﬂ<o, i= 1, 2,0, 1 (4)

where
3= (AL +B1K\)' Py, + P..(Anw + BiK,) + (A + B:K,) " P3 + (P3,) " (As + B:K))
A" = (An + B:K,)' Py, + Py (Al + BiK;) + (P3) T (As + BiK,)
E = (A + B:K;) ' Py + (P3) " (A + By K;)
then Je*, Ve€ (0,¢e* ], the controller

u =K x+ K,z (5)
can make the r closed-loop systems G stabilized.
[Pi;, €(Py)'T

Proof. For G (i=1, 2,+, r), let Pi=| ,- . Since Pi, =(Pj;)" >0 and
_PZI PEZ mad
PEZZ(PEQ)T>O! HED>05 VEE(OaE{)]
. . _Pil E(PE])T_| wi 7]
EEPEZ P;TEE: - + y g — e .
(P.) P, P:, _> 0,where E I el
So these » Lyapunov functions can be defined as V'=0"E. P8, where 0" =[x,z]. Thus,
= 4 - [ v
SV (0)=6"EPi0 +6"(P)'ES = [ & ]P; e et
o LET
m—— [xT zT]- m J -.:—T
where [I; = 2; ?_:

Z.=(ALW+BK)'P|,+Pi, (AL, +BiK,)+ (AL +Bs K, )T Pi + (P (AL +BiK,)
Ae=(An+B:K,)) Py, + P, (AL, +BIK;))+(Py)T (AL, +BiK,) +e (A +B, K, )T (P )T
Ee=(An+B;K;)"' Py + Pj (A +B3 K, ) +e(Al, +Bi K, )T (P3, )™ +¢ePi, (A, +Bi K, )

0 O(e) T

It ; , oy gy
t is obvious that II! =11 —I_[O(s:) OCe) II' +0(¢e)




No. 1 [LIU Hua-Ping et al. : Simuitaneous Stabilization for Sirgularly Perturbed Systems via +-- 3

Since II'<C0, for plant 7, €& >0, YVe& (0,¢" |, the closed-loop system G’ is stable.
[f e=min(e/ ) and €* =min{eg , €}, then for e€ (0,e” |, these r closed-loop systems re-

main stable.

3 ILMI algorithms

Generally speaking, (3) ~(4) is a nonlinear matrix inequalities, and directly solving
(3) ~(4) can not give any explicit results for the original singularly perturbed system
(1", In the following, we will give a special kind of solution for (3) ~(4), and the
closed-loop stability will be proved.

First, from Schur complements, (3)~(4) imply

Py, = (Py)" >0, E'= (A + B:K;) Py + P3 (A + B, K,) <0 (6)

So we can solve (6), then substitute the obtained Pj, and K, into (3)~(4),

Solving the inequalities (6) need 1I.MI technology. which is based on the following
theorem(the proof is similar to [ 12 ] so 1s omitted here).

Theorem 2. There exist matrices K, and P}, satisfying

Py = (P») >0, (An+ BK,)' P+ Pyu(As +BiK,) <0, i =1,2,+,r (7)

if and only if there exist matrices K, and P3, , K,y » Phyy satisfying

Péz — (PEE)T > 0, Pizzﬂ = ( )EZ{])T > O (8a)
6 PiB: A (K(")T]< 0, i= 1,2, r (8b)
| % — 1
where
@ =(Ay) Py + Py Ay — Py By (By) ' Phyy — Phyy By (By) ' Py, + Phyy By (B! Phye —
K: K — Ky K; + K5 Ko (9)

(Ybviously, 1n (8) , it P5,, and K&, are fixed, then it becomes a set of 1.MIs with re-
spect to P%; and K. To guarantee the feasibility, we can relax it as
& — aPh Py, By 4+ (Kp)' -
. % — I _

So, the simultaneous stabtlization {or » fast subsystems can be solved via Algorithm 1

< 0 (10)

described below.
Algorithm 1.
Step 1. Initiation: select Qi >0, solve the {following r algebraic Riccati equations:

(Ab )" Pooy + (P ) ' Aby — Phyy By (B3) T Phyy + Q2 = 0
and obtain the » initial value: K%, = — B} P%,,, arbitrarily select one of K}, as K,,.
Step 2. min a subject to: Py, =(P% )" >0, and (1C) . Assume the optimal value is «'.
Step 3. If «’<C0, then P3,, K,, are feasible solutions. Stop.

Step 4. min ZZrace(sz) subject to: Py = (P )" >0 and (10) , where a is replaced
: =1

¢

by .
Step 5. U E | P3, — Py || >0, ,where 0, is a pre-determined tolerance, then set Pj,,

=P, K,, =K, ,z—-H—l and goto Step 2; else, the problem may not be solved by this ap-
proach, Stop.

In Step 2, substituting K; and P}, into (3)~(4), (3)~(4) are still not LMIs, so the
[ILMI approach will be adopted to solve it, which is based on the following theorem (the
proof is similar to [ 12 | so is omitted here).

Theorem 3. There exist Pi, , P}, , K, satistying

Py, = (Piy)' >0, II' <0 (11)
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If and only if there exist Pi; , Py s K, , and Pio» P » Ky, satisfying

Pil — (Pi1)T>01 Pilﬂ — (Pilo)T,\/‘O (1Z2a)
0 PuBi+Ki (P B:+K; A"
—1 < 0 (12b)
¥ — I

where
ﬂi ::(Atll)T il +P111A31 —Jl_ (AIZI )TPEI + (PIZI)TAIZI T
1 BL (BT (Piyg)’ — Py Bi(BY) ' Piy + PiioBi(Bi) ' Py —
(P By (Bs) T Pho — (Piio) "By (By) ' Phy + (Piio) " By (B3) ' Py —
2K{K{, — 2K, K, + 2K, K, (13)
Obviously, in (12), if Pis Pios and Kj, are fixed, then it becomes a set of LMIs
with respect to P4, P3, and Ki. To guarantee the feasibility, we can relax it as

' —aP{, P, Bi+K{ (Py)'B;i+K{ A"
* — 1 < 0 (14)
% — T

% =

So, the simultaneous stabilization {or r slow subsystems can be solved via Algorithm 2
described below.

Algorithm 2.

Step 1. Initialization: Select Q' >0, solve the following r generalized Riccati equations

(ADTP) +(P)OTA' —(P)'B(BHY'Py, +Q =0, E'P, = (P)O'E

We can obtain Pi,,, P, ,Ki,» and arbitrarily select one of Ki; as K, (See [4 ] for the de-
tails).

Step 2. min a subject to: Pj; =(Pj;)">0 and (14). Assume the optimal value is «'.

Step 3. If <70, then P{,, P , K, are feasible solutions. Stop.

Step 4. min Etrace(Pil) subject to: P, =(P;;)" >0 and (14) where a is replaced by
1=1

Step 5. If Z | Pi,—Pi,, | >0,, where &, is a pre-determined tolerance, then set Piy,
=1

=Py Pyo=Ps, Kiy=K,, t=t+1, and go to Step 2; else, the problem may not be
solved by this approach. Stop.

Remark 1. From [ 10 ] we can see that the sequence {a'} will be a non-increasing se-
gquence.,

Remark 2. It is obvious that the initial values can affect the convergence of these algo-
rithms, Changing Q; and Q' can obtain different initial values.

4 Numerical examples
Example 1. Consider two singularly perturbed plants, which are described as

. [—0.95 —0.68" . [—0.92 0.11- L T0.2 0,47
T L 1,478 o 17 "R L o0 o 1> 7 l0.14 0.5
1 - 0.68 0.428 - 0" 07

A”:L—z.loz% ~0.2151" 7' 7 LoJ’ Bz = 1.
, —0.5 —1.08" , _[—0.22 0.147  ,, 0.5 0.3
L 0,57 0.2 17 T L o 0.3 ]’ 21"'[0.54 0.23_
, [ 0.8 0.28 - , [0 , [0
“ 7 l1.245 —o0.512]07 U 7T L)t TP L1
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1) Initialization: select Q =1, . Qo =1I,.,,0,=0,=10"",
2) By using Algorithm 1, after only one iteration, a feasible solution can be tound.
a=—1, 5362
1 -137. 2783 14.5751- ,  [82.1477 13.5164"
Pie =1 945751 2.7520 17 7% T [13.5164  2.3525 _
3) By using Algorithm 2, after 17 iterations, a feasible solution can be found: a=

— 0. 0060

, K, = [—28.5599 —5.,0522]

. _ [515.8354 39.46107 ., _ [—333.7649 —34.1066"
"7 39,4610  333.4700)7 T T L —7.8010 —0.0209 _
- 2.2877 —0.3651" -32. 1050 — 17.6205-

]
P21

] —_—

Y L—0.3651  2.7298
K, =[—11.7424 —1,8237 |
The evolving history of optimal @ is depicted in Fig. 1, where the abscissa represents
the number of iterations, vertical coordination represents the optimal e during each 1tera-

- 5.4G227  — 2.18983 _

t1on.

N \w

—(. 2 S
6 2 4 6 8 10 12 14 16 18

Fig.1 Plot of a(z) with respect to the irerative number

4) Validation

The eigenvalues of the open-loop and closed-loop systems are illustrated as Tables 1~
2. It can be shown that the open-loop system is unstable for e € (0,0. 3|, whereas the
closed-loop system is stable.

Table 1 Plant 1 Table 2 Plant 2

5 Open-loop Closed-loop € Open-loop Closed-loop
FO. o5 —0.5933 & 119121 —46,078 £41, 952 o 05 20-5424,—14.8002 —78.599,— 16, 0003
4, 7683 116, 8494 —0, 2688 = 1.14961 — 0. 1411 + 0.66861 —2.7837,—0, (142
01 —O. 6113 + 1,16971 —23.149 :}:21.257? 0 1 ]0.2714,—-7,4]89' — 39,1625, —7. 9595
' 2.4613+ 8. 47821 — 0, 26201 1. 140&; — 0. 1363+ 0. 6687 —0,0152,—2. 6285
5 9 —0.6453 4 1.12241 —11.693 410, 904i. 0.9 5. 1287, —3. 7346 — 19, 6575,—4. 0891}
' 1. 3328 + 4. 29811« —0, 2488 — 1, 12291 -0, 1271+ 0, 66863 —2.1804,—0,0178
0 7 —{,. 6703 = 1. 0685 —7.880 + 7.448: 0 3 3.4086,—2. 5112 o 13.3697,—3. 0016
" 0.9703 + 2.92Z24 —0,2395 — 11,1004 ' —0, 1187 = 0.6683%1 ~—1.6117,—0.0214

§ Conclusions

The main contribution of this paper is that the siraultaneous stabilization for a finite
collection of singularly perturbed plants, which has not been investigated, is solved in the
frame of ILMI method. Since no fixed structure has been constrained to the selection of
the control gain, it can be easily extended to the simultaneous stabilization for more singu-
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larly perturbed plants, which is a very difficult problem via Riccati equations. Finally, the
approach proposed here can also be used for the H.. control, optimal control, ezc.
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