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Robust Stability Analysis for Dynamic Matrix Control
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Abstract This paper describes the system by means of finite impulse response (FIR) model, and
defines the model uncertainty in the form of sum of squares of impulse response coefficient errors,
Then the closed-loop system using DMC (dynamic matrix control) algorithm based on finite im-
pulse response is given., Finally, the robust stability conditions for DMC algorithm are derived.
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1 Introduction

Model predictive control (MPC), also known as moving horizon control or receding
horizon control, is a popular technique for the control of slow dynamical systems, such as
those encountered in chemical process control in petrochemical, pulp and paper industries,
and in gas pipeline control. In using MPC, the stability is an important characteristic of
controlled systems. In this paper the dynamic matrix control (DMC) algorithm based on
finite impulse response is first discussed, and the closed-loop system is obtained. Then,
the robust stability conditions of dynamic matrix control (DMC) algorithm are derived.
The results proposed by this paper provide a theoretical foundation for analysis and design
of predictive controllers.

2 System model and predictive law
Consider a single-input single-output system, which is described in terms of its trun-
cated impulse response:

y
y(B) = > h(Dulk—i) (1)

where y(%) and u(k) are output and input variables respectively, A(7) is the impulse re-
sponse coelficient, while N is the order of the system. We use

y (k) = zN:h’(z')u(k — ) (2)
as the model of system (1). So we can gei?the predictive output as
y (k+j) = ih’(i)u(k—l—j—i)—l—d(k) (3)
where -
d(k) = y(k) — y (k) (4)

Using the algorithm proposed in [ 1], we can get

N
u(k) = k,r (k) + Z (k, AR +a,)ulk — 1) (5)

P
where a; =&, ‘J—Zkﬁ[“h!(l—l—j)], a; “—ka[ R G+)](i=2,--yN), Ah(i)=h"(i)—

i=1

h(i), k., k.;, k, are coellicients obtamed durmg optimization.
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3 Model uncertainty and robust stability conditions for DMC
Using (2) as the model of system (1) , we define the model error M as:

M = Z NIOETXONE (6)

From (5), we can rewrite the DMC closed -loop system as

4U(/’er + 1) = (Ay + AAPOUR) + Br (k)

y(k) = CU((k) ()

where

; (R(N) !
Ay = ‘ ‘ , C = . , AAy = kr(
h(l)

B= (0 = 0 k)", Ulk)= (uk—N) =+ ulk—1)"
Lemma 1/, Let A,QER™ and Q=Q">0. If |A(A)|<1, then the equation
A'PA—P =—Q (8)
has a unique solution P& R and P=P"'>0. A(A) are all the eigenvalues of matrix A.
Lemma 2%, Let A€ R™", If there exist PE R"" and P=P" >0 satisfying
A'"PA — P <0 (9)

- )
AR(N)  ++  ARCL)

then |A(A) | <.
Lemma 3. Assume AER"™" and |A(A) |<1. The sufficient condition of |A(A+AA)
<1 1s

|aaf <= f1— duelD (10)

where P,Q&E R, and P=P"'>0,Q=Q" >0 satisfying (8). lpnx(P)=Max{A(P)}, Amn
(Q=Min{A(Q)}, |AA|=ALL(ATA).

Proof. See appendix.

Theorem 1. Assume [A(Ay)|<C1l. The closed-loop system obtained by using the
DMUC algorithm and Model (2) is asymptotically stable if Inequality (11) 1is true.

B \/M<1—-—\/1—"mi“i?); (11)

where P,Q&R""*, and P>0,Q>0 satisfying ALPAy—P=Q.

Proof. From (7), we can get

|aAL =1k | VM (12)
Using (11), we can turther get
- _ Amin (Q)
|aAL || < 1 Jl e (13)
By using Lemma 3, we get |[A(Agz+AAyL)|<<1. So we can get that system (7) is asymp-
totically stable. B

Corollary 1. Assume |A(Ay)|<<1l. The closed-loop system obtained by using the
DMC algorithm and Model (2) is asymptotically stable if Inequality (14) is true.

A (Q)
|k | VM < (P (14)
where P,QER"", and P=P"'>0,Q=Q" >0 satisfying ALPAy—P=Q.
Proof. Obviously, we can get
. Amin (Q)_ _ ]- Amin (Q) Amin (Q)
: \/1 Amax (P) 1+\/1 A (Q) ><z’tm(P) - 2Amzz CP) (15)
Amax (P)

So, if (14) is true, then (11) is also true.
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Theorem 2. If |A(Ay) | <1 is true and there exist PER™",P=PT >0, o= |k, | vM
satistying (16), then the closed-loop system obtained by using the DMC algorithm and
Model (2) is asymptotically stable.

—P ALP ARP |
PA 0 P 0 < 0 (16)
I 0 0 —a 1

Proof. By using Lemma_Z » we can get that if there exist PER"", P=P"' >0 satisfy-

Ing
(Ay +AAy) P(Ay +AAp) — P <O (17)
then |A(Ay+AAgR)| <1 and system (7) is asymptotically stable. If a = |k, | vM =
|AAL| s we can obtain that Inequality (18) is true for all x€ R".
roX }T"azI 0 'I: X -
CAApx 0 —IJLAAux_
By the property of matrix, we can get that Inequality (17) is equivalent to
- x ' TAFPAyg—P ALPOr x 1
0O 1

_AAHJC_ 3 PAH P _ _AAHI__< ( 9)
for all x€ R" and x5%£0. We further rewrite (19) using (18) as

> 0 (18)

~ALPAy; — P+ 1ol ALP -
nFAg H
L PAH P"""TI_<O (20)
where 7>0. From (20), we can further get
"ALPA; —P+4d°1 ALP A
H H H
i PA . B_ I__< 0 (21)

where P=P/r. By using Schur complement formula we can obtain (16).

4 Conclusions

The sufticient stability conditions for DMC algorithm have been presented in this pa-
per, which can assure the closed-loop system using DMC algorithm to be asymptotically
stable, when the coefficients of characteristic polynomial don’t satisty Jury's dominant co-
efficient lemma.
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Appendix A
Proof of Lemma 3. If |1(A) | <{1,we can get that there exist P€ R"™*", P=P">0, and Q€ R*",Q=
Q" >0 satisfying (8). For all x€ R", we have x’ ATPAXx=x"(P—Q)x=x"Px—x" Qx < px (P)x' x—
Amin (Q)XxTx. So we can obtain || ATPA | <Ay (P) —Amin (Q). Obviously, ||AATPAA|<|AA|? || P is al-

ways true. Since P=PT >0, we can rewrite P as P=DD", So we can get

| ATPAA( = || ATDEDAA| << |ATD” | X | DAA| = | ATPA |2 || AATPAA || V? <
v Amax (P) anax (P) — Amin (Q)) || AA | (A1)

Similarly, we can get

| AATPA << V]IP] (JTP— 2un CQ) | AA| (A2)
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From these, we have
(A+AA)TP(A+AA) — P = ATPA — P+ ATPAA + AATPA + AATPAA =
— Q+ATPAA +AATPA + AATPAA <— 2uin (Q) +2 v/ Amax (P) Gimax (P) — Amin (Q) || AA |4 || AA || 2 Aax (P)
(A3)

Using the formula of solving the one-place quadratic equation ax” +bxr+c¢=0, we can obtain

— Amin (Q + 2 /[P (P — Auin ( QD || AA [+ | AA |2 || P|| << O (A4)

when Inequality (10) is true, where a=Anax (P)s €= —Anin (Q) s6=2 /Ainax (P) Aonax (P) — Amin (Q) ). From
LLemma 2 and Inequality (A4), we can get |A(A+AA) | <1,
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