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Abstract Rough set theory is a new mathematical tool to deal with vagueness and uncertainty.
The classical rough set theory based on equivalence relation has made a great progress, while the
equivalence relation is too harsh to meet and is extended to tolerance relation in real world. It is
important to investigate rough computational methods for rough set theory, which is one of the
bottleneck problems in the development of rough set theory. Matrix computation based on tole-
rance relation for information systems is discussed, and a one-to-one relationship between tole-
rance relation and tolerance matrix is constructed in this paper. Two algorithms for attribute re-
duction in incomplete information system are presented with an example to illustrate their validity.,
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1 Introduction

Rough set theory ts a mathematical tool to deal with vagueness and uncertainty of im-
precise data, The theory introduced by Pawlak in 1982 has been developed and found ap-
plications in the field of decision analysis, data analysis, pattern recognition, machine
learning, and knowledge discovery in databases.

It is very important but difficult to investigate rough computation in rough set theory,
such as finding all reducts or minimal reducts, which is NP-hard. Therefore, many com-
putational methods are proposed by using heuristic algorithm. For example, Guan et al. '
presented a heuristic algorithm for attribute reduction using the importance of attributes.
Theresa Beaubouef'”! and Duntsch et al."®) introduced information entropy into rough set
theory to depict knowledge roughness. Miao Duo-Qian et al.'*! used mutual information as
heuristic knowledge and put forward a heuristic algorithm to find one minimal reduct of a
decision table. Wang Guo-Yin et al. '™ presented a kind of attribute reduction algorithm
based on conditional information entropy. Guan et al.'®™ defined an equivalence matrix
based on equivalence relation, thereby made equivalence relation correspond to equivalence
matrix, and described rough computational methods with matrix computation. Though in-
tuitively and validly, this method cannot be used in the decision table.

Computation methods mentioned above are based on the equivalent relation of the
classical rough set, but equivalent relation is too rigid and even unnecessary in real world,
especially in the processing of incomplete information system with null values, where e-
quivalence relation cannot be satisfied. In order to handle incomplete information system,

-7} extended equivalence relation into tolerance relation, which meets re-

Kryszkiewicz M
flexive and symmetric laws. Tzung-Pei Hong ez al.® presented an algorithm based on to-
lerance relation to stuff null value and extracted rules by using the upper and lower appro-
ximation, However, this algorithm is invalid for overmuch null value.

A one-to-one relationship between tolerance relation and tolerance matrix is construc-
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ted in Section 2. The tolerance matrix of incomplete information system and how it repre-
sents the importance of attributes are introduced in Section 3 and Section 4, respectively.
On the basis of the above, two new algorithms for attribute reduction are proposed with
their time complexity analyzed in Section 5. Section 6 1s devoted to example analysis and
Section 7 concludes this paper.

2 Tolerance relation and tolerance matrix

S=(U,A) is called an information system, where UU is a non-empty finite set called u-
niverse denoting the set of all objects, and A is a non-empty finite set denoting the set of
all attributes. If the value of an object corresponding to an attribute is unknown, then the
information system is called incomplete one.

The binary relation P on U is tolerant, if it is 1) reflexive; uPu for all uc U, 2) sym-
metric: if «Pv, then vPu for all u,v&U.

Definition 1. If (3 is the set of all tolerance relations on U, P,Q& (2, the intersection of
tolerance relations is defined as follows: «(P{)Q)v=ulPv, uQw.

Now we introduce a partial ordering relation over {2: inclusion.

Definition 2. ForP.,Q€ 2, if P(1Q=PFP, namely uPv=>uQv, we call that P is included
in Q (that is to say Q includes P), denoted by PCQ. It PEQ and P##Q, we say that P 1s
strictly included in Q (that is to say Q strictly includes P), denoted by PCQ.

Then we introduce the definition of tolerance matrix as follows, which is correspond-
ing to tolerance relation on the universe U={u, sus,***,u|y| } (where |U| denotes the car-
dinality of U).

Definition 3. Let U={u; yu;,***,u|uv| fand P be a tolerance relation on U and M be
its matrix. Mp is defined as follows:; Mp=(r;) v x|v| » Where r; = b ff u,Pui.

0, 1f not

Property 1. 1) r,=1 1<i<|U!l; 2) r,=r; 1<i,j<<|U].

The matrix, which satisfies Property 1, is called a tolerance matrix. Obviously, one
tolerance matrix can determine one tolerance relation on U. Therefore, the relation be-
tween the tolerance relation and tolerance matrix on the universe is one to one,

The intersection operation of tolerance matrix 1s defined as follows.

Definition 4. For P,Q€ 2, the corresponding intersection operation ot tolerance ma-
trices is defined.

MP n MQ — (?‘,'j) U = [ U] n (i’”:;) (U x U] — (min(m !r:j)) (U | x U]

Property 2. Mpno=M;p (1 M,.

Definition 5. The partial order relation “<{” of tolerance matrices on the universe U is
defined as follows. We say M is less than Mg, if Mp=(r, )Y<\Mo=(r,; )1, <r , 1<,
j< U, If Mp<<{M, and Mp#M,, we call that Mp is strictly less than Mg, denoted by
Mp<My.

Property 3. PECQeMp<M,; PCQESM, <M.

Definition 6. Let (U,2) be a knowledge base. Then two knowledge bases K, = (U,
2,) and K,=U,,) are equivalent, itf (| P,= (] P;, denoted by K,=K,.

P. €0, P, €0,
Property 4. K, = (U ,2,)=K,=(U,(1, )@P Qﬂ My, ., Qﬂ Mp, .
Definition 7. The knowledge base K, =(U,{£;) is finer than K,=U,£,), if P Qﬂ P,

C ) P,, denoted by K, <<K,; K,=(U,{£,) is strictly finer than K,=(U,2,), it P N P,

P, €0,

C () P,, denoted byK, <Kj;.

P, €0,
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Property S. KléKZ@Pﬂ My, < () MPQ;K1<K2<:’PO Mp < (1 Mp .

Ry’ P, €0,

3 Information systems and tolerance matrices
3.1 Non-decision tables and tolerance matrices
An information system is denoted by S=(U,A), where U is its universe, A is its at-
tribute set and elements of A are called attributes, For each a€ A, we can define a toler-
ance relation P, determined by a on U: uP,v=a(u)=a(v) Va(w)=" Va(v)=", u,v&
U, where * denotes null value. Namely, the object ¥ and the object v are tolerant on the
attribute a, if the value of u on the attribute a 1s equal to the value of v on attribute ¢, or
the value of ¥ on attribute a is unknown, or the value of v on attribute a 1s unknown.
Therefore, one attribute can determine one tolerance relation, and consequently, one tol-
erance matrix 1s determined. The tolerance matrix on the attribute a 1s denoted by M,.
The intersection of tolerance relations 1s still a tolerance relation, so the tolerance re-
lation Py determined by B& A is defined as follows: Pg= (] P,, and the corresponding

b B
matrix 1s MB= ﬂMb.
bE B

Property 6. For S=(U,A) and X,YCA, then My [ My=My,y and Myyy<M;y , My,

Property 7. For S=(U,A) and X& YA, then My< My,

Property 8. For S=(U,A) and X, YCA, if My<<My then YV ZC A, My, <My, and
it Mx=My then V¥V ZCA,My,,=My_;.
3.2 Decision tables and tolerance matrices

Let S=(U,A) be an information system, where U is its universe, A=ClUD,C D=
¢, C is its conditional attribute set, D is its decision attribute set, and for every u € U,
du)# " (de D)., We can define tolerance relation P, of a conditional attribute a € C as
follows:

w,Pu;od(u;) = d(u;) oralu;) =alu;) V alw,) ="V aly;) =" Vu;yu, € U

The tolerance matrix of the conditional attribute a € C is defined as:.

1, d(u;) = d(u;)
M, = (rj) uixjul =<0, alu;) 7 alu;)yd(u;) # d(u;)
0.5, alu) =a(y;) V alw,) =" V alw;,) =" ,d(u;) % d(u;)
1< i,j < |U|
For any subset of the conditional attribute set BCC, its tolerance matrix is Mz= [\ M,.

be B

Property 9. For S=(U,CUD) and X,YCC, then My [\ My =My, y and My y <My,
My,

Property 10. For S=(U,C{UD) and X&EYCC, then My<{Mjy.

Property 11, For S=(U,CUD) and X,YCC, if My<<My then ¥V ZCC, My <My,
and if My=My then VZC.C,Mx,;=My;.
3.3 Example

In the following, the incomplete information system in paper | 7| is introduced. The
information system is shown in Table 1, where the null value is denoted by “ * ”,U={1,2,
3,4,5,6} is its universe, C={Price, Mileage, Size, Max-Speed} is its conditional attri-
bute set, and D=1{d} is its decision attribute set.

If the decision attribute is not included, the information system is a non-decision table

and the tolerance matrices determined by attribute set and some of its subsets are the fol-
lowing ones.
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Tabhle 1 Information system abcut cars

Car Price Mileage Size Max-speed D
1 High High Full Low Good
2 Low * Full Low Good
3 * * Compact High Poor
4 High * Full High Good
5 * * Full High Excel
6 Low High Full * Good
1 0 0 0 0 0O
0 1 0 0 0 1
0 0 1 0 0 0O
A/I S M ‘\{ Mileage) —
C C\{ Mileage) 0 0 0 1 1 0
O 0 O 1 1 1
o 1 0 0 1 1
1l 1 0 0 0 1 1 0 0 0 0 17
1 1 0 0 0 1 O 1 0 0 0 1
0O 0 1 0 0 O o 0 1 1 1 1
M ' — M ize} —*
C\{ Price} 0 0 0 1 1 1 C\{ Size} 0 0 1 1 1 0
0O 0 O 1 1 1 O 0 1 1 1 1
'l 1 0 1 1 1 1 1 1 0 1 1

If the decision attribute 1s included, the tolerance matrices determined by attribute set
and some of its subsets are described as follows.

Me= M\ iprice = McyiMiteagey ==

1 1 0 1 0 1 1T 1 0 ] 0 1] -
1 1 0 1 0 1 1 1 0 1 0 1
0 01 0 0 0 Y 1o 0 1 0.5 0.5 0.5
1 1 0 1 0.5 1 CMSzer 7701 1 0.5 1 0.5 1
0 0 0 0.5 1 0.5 0 0 0.5 0.5 1 0. 5
1 1 0 0 0.5 1 _ 1 1 0.5 1 0.5 1

4 Matrix presentation of dependency between attribute sets

Definition 8. Let S=(U,A) be an information system, where A=CUD,CND=¢, C
is the conditional attribute set, and D is the decision attribute set. S is a non-decision table
when D=¢%(otherwise D is a decision table), and X, YZ&C,u,v€eU, if uPyv=>uPyv, then
we say Y is strictly dependent on X, denoted by X—Y (if D#¢, we say Y is dependent on

X with respect to D, denoted by X—>Y).

Property 12. XYMy <My (X>YoMy<M,).

Definition 9. {X—Y(X—>Y), and Y= X(Y—X), then X and Y are identically de-
pendent, denoted by XY (XoY).

Property 13. XHY(X"E'Y)@MXZMy.

Definition 10, lLet x€ XCC. If XX\ {zx} (XX\{z}, then x is not important in X
(with respect to D), otherwise x is important in X(with respect to D).

Property 14. x is not important in X (with respect to D) if and only if Mx=Mx ; T
1s important in X {(with respect to D) if and only if Mxy<Mjx\ ..

Definition 11. For $C XCC, the set of all important attributes (with respect to D) in
X is called the core of X (with respect to D), denoted by Core(X), and Core(X) =
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{.I‘GX IMX<MX\{_:} }.

Definition 12. $C X C is independent (with respect to D), if each element in X is
important (with respect to D), else X is dependent (with respect to D).

Property 15. 1) If X is dependent (with respect to D), then X U {x;,xz,*sz:} 18
still dependent (with respect to D), where x; € C\ X, I<{i<(k.

2) If X is independent (with respect to D), then X\{x,,x:,**»,x;} is still independ-
ent (with respect to D), where x; € X, 1< j</.

Definition 13. The significance of € XCT C in X (with respect to D) is denoted by
sig, (x), and defined as follows: sigx () =|Mx —Mx |, where | My | denotes the num-
ber of non-zero elements in tolerance matrix My.

Definition 14. X, &= X< C is defined as a (relative) reduct of X if 1) X, X (X, X)),
2) X, 1s independent (with respect to D).
Property 16. Core(X)=(YR(X), where R(X)denotes all reducts of X.

S Attribute reduction based on tolerance matrix

We know that acquisition of all reducts of an information system is an NP-hard prob-
lem, so it needs heuristic knowledge to reduce the searching space. From the above, the
tolerance matrix of an attribute subset should not be changed if an attribute, which is not
important (redundant) in an attribute subset, is removed from the attribute subset. So we
can obtain a reduct of an information system by removing redundant attributes one by one,
The core is the mutual part of all reducts, so we can also increase attributes gradually from
the core until the tolerance matrix is equal to the original one, and then we can obtain a re-
duct. In some cases, the minimal reduct is interesting, so we should select the most im-
portant attritbute when we increase attributes,

We will present algorithms of the non-decision table and decision table based on toler-
ance matrix respectively as follows.

5.1 Attribute reduction algorithm for non-decision table

Algorithm 1. Input: non-decision table S=(U,A).

Output; one reduct of S=(U,A), denoted by B.

Step 1. Compute tolerance matrix M, of S=(U,A);

Step 2. Let B=A, repeat.

1) For all x€ B, compute Mg,

2) Let P={x€B|Ms=Map, }. If P=¢, stop; else select x€ P,B=B\{x}, go to
1).

Step 3. QOutput B, which is a reduct of S=U,A).

We analyze the-time complexity of Algorithm 1., Each item of M, should be computed
in Step 1. The values of any two objects on |A/| attributes should be compared in the
worst case. Because there are |U|? items in M,, the time complexity of Step 1 is
OClA||U|?). In Step 2, the time complexity is OC|A|?|U|?) when computing all Mg,
in 1), and the time complexity of 2) is OC|A| |U|%). It needs to cycle |A| —1 times in
the worst case, so the time complexity of Step 2 is O(|A|*|U|?) and the whole time com-
plexity of Algorithm 1 is OC{A|*|U|?).

Beginning from the core, we increase non-core attributes gradually until the tolerance
matrix ts equal to that of the information system, and then we can obtain its reduct, The
algorithm i1s introduced as follows.

Algorithm 2. Input: a non-decision table S=({U,A);

Output: one reduct of S=(U,A), denoted by B.
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Step 1. Compute tolerance matrix of S=({U,A), denoted by M, ;

Step 2. Compute the core of S=(U,A), denoted by Core(A);

Step 3. LLet B=Core(A), and repeat that;

1) If Mg=M,, then stop; else go to 2);

2) Compute Mg, ,» for all x€ A\B, and let 2, € {x| min Mg, |}, B=BU {x,},

r€ A\B

go to 1);

Step 4. Output B, which is a reduct of S=(U,A).

Similarly, We can conclude that the whole time complexity of Algorithm 2is OC|A | |U|?%).
5.2 Attribute reduction for decision table

As the computational method of tolerance matrix ts similar for the decision table and
the non-decision table, the computation of matrix is the same. We can generalize the at-
tribute reduction for non-decision table to include the decision table as shown in the fol-
lowing example analysis.

6 Example analysis

We still use Table 1 to verify the validity of the algorithms presented in Section 5.

We use Algorithm 1 to reduce data table without considering ot the decision attribute d.

Step 1. Compute M (see 3. 3).

Step 2. Let B=C, compute Mc\ price) s Mc\(Mileage) » M\ (siey and MC\{Max-Speed} , respectively
(see 3. 3). Because Mg\ Mueges = Mcs B=C\ { Mileage} = { Price, Size, Max-Speed}. Com-
pute Mg pricet s M\ isizer and Mp\Maxsoeed; » TESpectively. None of them 1s equal to M, so stop.

Step 3. Output B={Price, Size, Max-Speed}, which is a reduct of the non-decision ta-
ble.

We can also obtain the reduct by using Algorithm 2.

For Table 1, we use Algorithm 2 to compute its relative reduction.

Algorithm 2.

Step 1. Compute M (see 3. 3)

Step 2. Compute Core(C) = {Size, Max-Speed

Step 3. Let B=Core(C) = {Size,Max-Speed}, compute Mg. Because My=M_,, stop

Step 4. Output B={Size, Max-Speed}, which is the unique reduct of the decision ta-

ble.

7 Conclusion

In the rough set theory, it is very important to examine computational methods for in-
complete information systems. In this paper, we define a tolerance matrix based on tole-
rance relation, construct a one-to-one relationship between tolerance relation and tolerance
matrix, and represent rough computational methods by matrix computation tor incomplete
information systems. Finally, we present two algorithms for attribute reduction based on
tolerance matrix with polynomial time complexity for incomplete information systems,
whose validity 1s experimentally verified.
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