30K B3Y H 31 4 %% Vol. 30, No. 3
2004 4E£ 5 H ACTA AUTOMATICA SINICA May, 2004

Exponential Stabilization of Euler-Bernoulli Beam with
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Abstract This paper studies the stabilization problem of Euler-Bernoulli beam with general dissi-
pative boundary feedback controls. First, by virtue of semigroup theory, the considered system is
converted into an evolution equation in abstract space and the uniqueness of the solution to the
evolution equation is proved. Then the eigenvalues of the closed loop system is studied and the
necessary and sufficient condition for the closed loop system to be asymptotically stable is derived.
Finally, the condition for the closed loop system to be exponentially stable is worked out by esti-
mating the corresponding eigenfunctions.
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1 Introduction

The purpose of this paper is to study the boundary stabilization problem of Euler-Ber-
noulli beam. To avoid the tedious formula and calculations, we consider the ifollowing
boundary control system of the Euler-Bernoulli beam with the unit length and the norma-

lized parameters " .

Yz )+ 3y (xst) =0, 01, t>0
y(0,¢) =y (0,2) =0, t=>=0
y(r,0) = y(x)y v (2,0) = y,(x)y, x € (0,1)
Y (1,8) = w (£)y, —3' (1) = u,(2)y 220
Here and henceforth, the prime and the dot always denote the derivatives with respect to
space and time variables, respectively.

We apply the tollowing linear boundary feedback

u (1) = ay(1,8) + By (1,2)

u, (1) = vy (1,2) + 7y (1,8
as the controls to the right end of the beam. Here a,83,7, Y€ IR are some feedback gain con-
stants, Later we will use the notations:

X (1)

(2)

- B
o B >
ATT Pl BA
Fol_ S| BA Brc
B

Up to now, a lot of interesting results on the boundary feedback stabilization of Eu-

[1~8] Tt is well known

ler-Bernoulli beam model have been obtained by many investigators
that this type of controls, under the conditions of a,7>=20, ¢* +7¥*5%0 and f=1=0, can
stabilize the Euler-Bernoulli beam exponentially‘’” /., Recently, in [ 8], under the condi-
tions of a,7 >0 and f=17=0, it is proven that the infinitesimal generator of the C, semig-

roup corresponding to the closed loop system has the Riesz basis property, and that the
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corresponding C, semigroup satisfies the spectral determined growth assumption and the
energy of the closed loop system (1)~ (2) is exponentially stable. Now, 1t is natural to
ask what the asymptotic behavior will be like in the general cases of @,8,7 and 7. The sig-
nificance of the investigation of this type of boundary feedback control problem can be
found in [1,2]. In the following, we study the general case as described above, and par-
ticularly we consider the degenerate case of matrix B, It will be shown that, in the case of
B#t and B=0, the closed loop system (1)~ (2) is exponentially stable if and only if
rank(B) =1, and that in the case of =1, some sufficient and necessary conditions are also
given for the closed loop system (1)~ (2) to be exponentially stable.

This paper i1s organized as follows. In Section 2, the wellposedness of the correspon-
ding closed loop system is considered. In Section 3, we outline some results about the as-
ymptotic decay of the closed loop system. In Section 4, we prove that under the condition
of B0 (which is equivalent to the dissipation of .4) and 857, the closed loop system (1)~ (2)
i1s exponentially stable if and only if rank(B)=>=1. Moreover, in the case of =1, we also
derive some other necessary and sufficient conditions for the closed loop system of (1) and
(2) to be exponentially stable.

2 Wellposedness of the closed loop system
To begin with, we incorporate the closed loop system (1) ~(2) into a certain function
space. To this end, we define a product Hilbert space H as
H=V; X L*(0,1)
where Vi={p€ H*(0,1) | ¢(0)=¢ (0)=0}, and H*(0,1) is the usual Sobolev space of
order k2 on the interval (0,1). The inner product in H is defined as follows.

1
(Yl 9Y2)'H — L(y?y'g—l— Z1 fz)dl’

where Y, = v,,2, "€ H for k=1,2, and the superscript r denotes the transposition of a
matrix.
We then define a linear operator A in H by

I —_— [ ] iy . —_

.A Y = zwr ’ Y e D(.A)

Lz] L—y 1 Lz
D(A) ={ly,z]" € H| y € Vi N H'(0,1), z € V§,
(Y"1, —y" (D] = Flz(1),2' (1) ]}
Then the closed loop system (1)~ (2) can be written as the following linear evolution
equation in H.

dY ()
dt

= AY (¢) (3)

where Y(£) =[y(* ,t),y(+ ,0) ]

Lemma 1. If B0, then A generates a C, contraction semigroup T(z) in H.

The proof of this Lemma is similar to that of the related Lemma in [ 8 |, hence it is
omitted here,

Thus, according to the C, semigroup theory, we get

Theorem 1. It B=0, then for any Y, € H, (3) has a unique weak solution Y(2) =T(1)Y,,
where T(z) 1s the C, contraction semigroup generated by A. Moreover, if Y, €ED(A),
Y()=T()Y, becomes a unique strong solution to (3).

3 Asymptotic stability
The energy corresponding to the solution of the closed loop system (3) is defined as

1
E() — _;_Lu V' (xat) |24 5(x,0) | dx
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where Y(£)=[y( + ,t),y( * ,t) |7 is the solution to (3). f Y, €D(A), then

E@) =—[y(1,),5 (1, )]B[3(1,8),3" (1,0 T (4)

From the definition of A, it is not difficult to prove the following lemmas.

Lemma 2, Assume that B2=0. Then A7 exists and is a compact operator on .
Therefore, c(4), the spectrum set of A, consists of only isolated eigenvalues with finite
multiplicity. .

Lemma 3. Assume that B2=0. Then any nonzero eigenvalue A of A satisfies

z(coshz + cosz + 2) + (B+ t)2(coshz — cosz) +| F | z(coshz + cosz — 2) +
Yz? (sinhz + sinz) + 2a(sinhz — sinz) = 0 (5)

where z= +/2A.

The proof 1s omitted.

Theorem 2, Assume that B_=0. Then the energy of the closed loop system (3) decays
asymptotically to zero if and only if the following transcendental equations on £ € IR have
no nonzero solution x.

(14| F |)coshzxcosx+1—| F |= 0
< ¥(coshx sinx + sinhx cosx)x® + (B4 t)xsinhxsinx + (6)
k a(coshx sinx — sinhxcosz) = 0

Corollary 1. Assume that B_=0 and f=7=0. Then the energy of the closed loop sys-
tem (3) decays asymptotically to zero if and only if o —¥*340.

The results obtained in [ 1,2 ] imply the corollary. Here we can-also use Theorem 2 to
prove the desired assertion.

To limit this paper within certain pages,we omit the details of the proof here.

Corollary 2, Assume that B0 and 84+ 7=0. Then the energy of the closed loop sys-
tem (3) decays asymptotically to zero if and only if rank(B) >=1.

4 Exponential stability
The following lemma is vital to proving the main result in this paper.
Lemma 4. Assume that B=0, rank(B) >0 and 6{ A)(iIR=¢9. Then there exists a

positive constant M such that
| RGp, D ||l <M, Vyp€lR
where R(A, 4)=(A— A)7' is the resolvent of A.

Proof. By using the continuity of the resolvent, we need only to prove Lemma 4. for
sufficiently large positive 7. For A=i0® and [ f(x),g(x)]"E€H, letly,2]"€ D(A) such
that A— D v,z]"=1f.g]" i.e.,

Ay —z = f
Ax +yﬂ'ﬂ — g (7)
Eliminating 2z from (7), we have

tr

y —wly=iw'f+4+g

ﬂy(O) = y'(0) = 0 (8)
y (1) = aGa®y(1) — (1)) + Bliw®y (1) — (1))
— v (1) = i’ y(1) — F(1)) 4+ 7Galy (1) — F(1))
The general solution to the first equation of (8) is
Y(z) =Y, (x) +Y,(x) (9)

where
Y(z)=[y,y+y,5"], Y =®(A

Yk(-fr) — I:yk!y;!ygpyf r! h — 192

Y, (x) = rdf)(x—— s)10,0,0,1 |"Gw® f(s) + g(s))ds
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A= Ealyazpagya.;]r., dp 6 @g k=1123394
with @(x), the state transition matrix to the first equation of (8), as
d(x) A
B (coshwx-coswzx ) 1 (sinhwz~+sinwx ) —1-5 (coshwxr—coswx ) ——1—5- (sinhwz—sinwz)
2 2w 2w 2w
= (sinhwz—sinwzx) 2 (coshwx+-coswx) 1 (sinhwxr+sinwzx) —lg (coshwx—coswzx)
2 7 2w 2w
2
92- (coshwx—coswx) _c_;_ (sinhwz—sinwx ) % (coshwzxr+coswx) -21(-0 (sinhwx<+sinwzx)
w® , . : w’ w , . . 1
) (sinhwx4-sinwz ) > (coshwxr—coswx ) 5 (sinhwxr—sinwx ) 0 (coshwx+coswx)

From the boundary condition of y(x) at x=0, we get immediately that a; =a, =0. Simi-
larly, from the boundary condition of y(x) at x=1, it follows that
(1 (1) —iwlay, (1) —iw?By; (1) = h; (1)

{ 4 . ’ !
uyl(l) Hﬂzfyl(l) th)’yl(l) :hz(l)

(10)

where

b (1) A— 35 (1) + iwlay, (1) + iw?By; (1) —af (1) — BF' (1)

hy (1) A— v, (1) —iwPty, (1) —i@w? Yy, (1) +of (1) 4+ 7f (1)
By the definitions of y,(x), A, (1),h,(1),D(A) and H, and integrating by parts, it fol-
lows that '

1
yp (1) = Ilc;e‘”Le'“”[if”(s) +g()Jds+O0™ I £/ + gl (11)
"1
hy (1) =— Ilgje‘"(wﬂ—-ia—iwﬁ) e Lif () +g(DIds+OC £ + I g ) A2
1
h, (1) =— Zlae“’(l + it + ti)Le"‘“[if”(s) 4+ g ]ds+0OCh I+ gl A3
From (10)
{ra3 =G_1(g11h1(1)—|—g12h2(1)) (14)
dy = G_l (g21h1 (].) +g22h2(1))
where
G — 811 Bz
a1 B2 |
g = i(sinhf.u—l— sinw) -} ® (sinhw — sinw) | Iy(m:oslnc:u-—-— COSw)
2w 2 2
g1z = % (coshw 4+ cosw) + %(sinhww sinw) -+ izﬁ(coshw— COSW)
g2 =— —%—(coshw -+ cosw) zzr (coshw — cosw) i)fztu (sinhw + sinw)
a2 = —(;-(sinhw — sinw) i; (coshw — cosw) — iﬂz‘g—v(sinhw 4+ sinw)

When w 1s sufficiently large, it is not difficult to turn out that

| F (1 — coshw cosw) —

G =— —%—-(1 4 coshwcosw)

2

%Z(Coshw sinw + sinhw cosw) —
;—z (coshwsinw — sinhwcosw) i(ﬁ-2|— ) sinhw sinw =
(___ ( ‘ ‘f; | + T]i_)cosw—'— ;—'Z(COSCU—“ SInw) —
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Ii4},-(c:05w—\— SINW) - z(ﬁ: 2
By calculations, we obtain ’

sinw ) e 4+ O(w) (15)

| Ge™ |? = (—g-(coswm sinw) wy(cosw—}— Sinw) (f+ 1) Sinw)z i

4w 4 4
| F | 1 - {O(wze_‘”); Yy %0,
( 7 cosw— cosw) + Olwe=), y=0 (16)
We now prove that there exists a positive constant ¢ such that
; e-m_(i ‘;’?’Ca 7>0, (17)
| we™G | =¢cy Y =0,ad>0

1

400 || F{l +1)
1

400 | F Il +1)

for w large enough. In fact, for ¥#0, if |cosw+sinw|>> , then i1t 1s trivial

to prove assertion (17) for large w; if | cosw+sinw| << , then for w large e-

nough,

ST 1 1
 wGe l},g(l—l—lFl)!cosw];g lcosw];éloéc
which means that (17) is valid. For the case Y=0, the proof is similar.

Therefore, when w is large, by a lengthy calculation and analysis, it follows from
(11)~(14) and (17) that

V() =a, coshcu;rj— COSWI Ca, smhw.:z:;— sinwzr _
guh + gi2h; ga1rhy + ga by

(sinhwx + sinwx) =

(coshwxr 4+ coswx ) +

2G
—~ 3y () +OCH 7l + 1 gl

2wl

and

asy as/w=0C| 7l + 1] gl
Thus for w large enough, we get

|y @ | =0Ch£71 + gl (18)
By (9) and the embedding theorem, we obtain
Q4 SINWI

FOCH 7L+ 1 gl

W y(x) = y”(.:z:) — A3 COSWIT —

Then from (18) we get
Ayl = eyl =0CH 71 + gl
for large w. Hence, by using the embedding theorem again, it follows from (7) that, for
sufficiently large w,
[zl =0CH 1+ gl (19)

Thus from (18) and (19), the proof is finished.

The main result of this paper is as follows,

Theorem 3. Assume that B_=0. Then

i) 1in the case of 8%7, the energy of the closed loop system (3) decays exponentially
to zero as time t—><© if and only if rank(B)>0;

11) in the case of =1t and B>0, the energy of the closed loop system (3) decays ex-
ponentially to zero as time t~—>o00;

i11) in the case of 8=1t=0 , the energy of the closed loop system (3) decays exponen-
tially to zero as time t—<< if and only if rank(B)_>=1;

iv) in the case of =770 and rank(B)=1, the energy of the closed loop system (3)
decays exponentially to zero as time t—co if and only if
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3

Y . — sinhx sinx _
B ¢ 4= (coshx sinx + sinhx cosx) x coshz cosz 1 ; (20)
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