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Separability Theory for Blind Signal Separation”
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Abstract The basic theory of blind signal separation is discussed. Not only the sufficiency-neces-
sity condition is given for the extraction of single source but also the problem how many signals
can be extracted i1s answered. Moreover, the blind separation algorithm based on this theory is
proposed. The method can also be applied to blind extraction in the case of morbid mixture. At
last, simulation is done in different mixed conditions, and the results show that the separation
theory is correct and the algorithm is valid.
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1 Introduction

Blind signal separation has many potential applications since it retrieves original sig-
nals from the observed mixture of signals without any transcendental knowledge of the o-
riginal signals or the channels. It becomes one of the hot topics in the signal processing
field. Blind signal separation problem was proposed one decade ago. By the great effort of
the research, various etfective approaches and corresponding adaptive algorithms are de-
veloped'! 'Y,

Most of these algorithms are based on the precondition “the number of the observers
is greater or equal to the number of the source signals”. If the mixture matrix is of full
rank, the synchronous separation approach is used. If the mixture matrix is not of full
rank, the source signals may be extracted one by one, However, we find that the research
of the basic theory of blind signal separation is not plentiful, especially for the morbid mix-
ture (1. e., the number of observers is less than the number of the source signals, or the
source signals are not independent, etc). We should consider and try to solve some prob-
lems such as when we could or could not separate all the source signals from the mixed sig-
nals, and how many source signals we could separate,

This paper studies the above basic theory and give some basic solution. The paper is
composed of five sections, After illustrating our motivation in Section 1, we classify the
models of blind source separation in Section 2 and present some theorem on the necessary
and sufficient conditions of the separability. Also, we discuss how many source signals
could be extracted in this section. In Section 3, some algorithms are established according
to the theory proposed in Section2. Some simulations are made in Section 4 for three dif-
ferent cases. The simulation examples illustrate the validity of our theory. In conclusion,
Section 5 gives a brief summary of this paper and proposes some problems of the basic the-
ory, which should be further studied.

2 Analysis of extractability
The blind signal separation can be described as the following mathematical model

x(t) = As(z) (1)
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u(t) = Wx @) (2)
where x(2) = (z,(2) y***,x,,(£))" is the observed signal vector, s(£)=(s;(2),**,5,(t)) " is
the source signal vector that will be separated. A= (a;; ) nx» 1s the unknown mixture ma-
trix, The aim of blind signal separation is to adjust separation matrix W, according to the
observed signals, such that the separated signal vector u(z) = Cu, (2) yu, (£) 5o+ s, (2)) ' is
identical to the source signal vector in the wavetorm, That is,

u(t) = WAs(t) = PDs(¢t) (3)
where P is a permutation matrix while D 1s a diagonal matrix.

There are three cases of the above model: 1)m_—=n, rank(A)=n; 2)m=n, rank(A) <
n; 3) m<n. | .

The first case is that the number of observers is not less than that of the source sig-
nals and the number of the observed independent signals is equal to the number of the
source signals, The second case is that although the number of the observers is not less
than that of the source signals, the number of the observed independent signals is less than
the number of the source signals. The third case is that the number of the observers is less
than that of the source signals. In general, case 1) is said to be the normal case while cases
2) and 3) belong to the morbidity. At present, there are few researches who are concerned
with the morbid cases.

Next, we discuss the conditions, under which the source signals can be separated
from the mixed signals observed.

2.1 The necessary and sufficient conditions of extractability

From the extractive target (3), we can see the essential of the problem., That is,
whether there exists a separated matrix W, according to the unknown mixture matrix A,
such that WA is a diagonal matrix, Therefore, the problem becomes the existence of the
solutions to a group of corresponding equations.

Theorem 1. The necessary and sufficient condition of extracting one source signal from
the mixed signals is that, for matrix A, there exists an extended matrix A; of AT such that

rank(A;) = rank(A) (4)
where
a;;  an Am1l 0
K:’ — | &1 Az $ee A mi /1;'
..a'ln dz2q *er A mn 0_

1. e., the last entry of the ith row is A;, A,740, while the last entries of the other rows are
all zeros.
Proof. Consider a group of equations

anwintanWep+ "+ a4 Wim= 0

< QW 11 AW £2+ ees + Apmi W i = Ai (5)

L R N

A1, W :'1+ U i2+ *e —I_ ApmnW iy — 0
The coefficient matrix of the above group of equations is A", its extended matrix is A;.
The necessary and sufficient condition for existence of solutions to Equations (5) is

rank(A.) = rank(A") = rank(A) (6)
The equivalent condition is that there exists a vector W, = (w;; w2 »***»w,, )" such that
ATW:‘ — (09'"!0!Ai909"'!0)T (7)
Hence,
u, () = Wix(t) = WIAs(t) = (0,++,0,4;,0,:,0)s(t) = A;5,(2) (8)

It means a source signal s;(¢) can be extracted. The theorem is complete.




No. 3

LZHANG Jin-lLoong et al. : Separability Theory for Blind Signal Separation 339

Since the arbitrariness of the entry 4;, the above condition is not convenient to be veri-
fied. So, we present another equivalent criterion,

Theorem 2. The necessary and sufficient condition of extracting one source signal from
the mixed signals is that there exists an m X (n—1) sub-matrix A. of A such that 14+6(A,) =
c(A), where 6( * ) 1s the number of the nonsingular values.

Proof. Consider matrices

L ] B B ]
d;; 4 A1 ann d21 Udmil O
ET al#l_j. * am+1_1 E . a}.pl_l * am,t*—l O
i — .. ’ [ T 0
ai,+1 ., 141 di,i+1 A, it
B A1, dz, A mn | " A1n d 2 ) U onn 0

Obviously, one of the following equalities must hold. rank(ﬁ,-) —rank (A7), rank(ﬁi)=
rank(A.) and l-l-rank(ﬁi) —rank(A,).

et a, be the ith row vector of matrix A,. If rank(A,) =rank(A,), then vector a, is the

linear combination of the other row vectors, i.e., a;, = E "k,a;. This means that A, =0
f=1.j%i
contradicts to A;%0. There must be

1 + rank(A;) = rank(A;) (9)
Recalling that for any matrix B, one has rank(B) =rank(B”B) and B"B is the Hermit
matrix, so there is a matrix U, U"U=1, such that U"B”BU =diag(l5,+*,l?,0,++,0),
where [, are the singular value of matrix B. Thus, rank(B)=0¢(B) and
rank(A) = 0(A), rank(AT) = rank(A,) = o(A)) (10)
From conditions (9) and (10), we conclude that the necessary and sufficient condition of
extracting a single source signal from the mixed signals is 14+0(A,)=0(A). The theorem
1S complete,
2.2 The number of the extractable signals
After presented the necessary and sufficient condition of extracting a single source sig-
nal, we wish to discuss the number of the extractable signals.
Theorem 3. If there are L extended matrices A, such that rank(A,) =rank(A), then
there are at lest L sequentially extractable source signals.
Proof. Without loss of generality, assume that

a, dap Am1 I an an . a,; 0O
Al = 14y a5, ) A m; 0 ’ **t AL — 1dy1L dog 7 - AL
A1y, d 2, *e A in O_n A1y d2n Lo A mn 0 |

Since rank(A,) =rank(A), from Theorem 1 we can extract one source signal s, (¢). By e-
liminant method, the mixture matrix can be transtormed into

Consider

A

(A2 Wy
Q13 W1

ki —
el ——

e E &%

— dog Wo—1 **°

— Qg Wo—1 **°

a1, W 1+ 3, W 2+ *ee + 4 -

"t a'lrr

—amgﬂjmz Ag

4,

— d,,3 U/ ,,

O

(11)

Since rank(A,) =rank(A), again from Theorem 1 there exists the solution to the follow-
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Ing equations
rir"’:]'lli'{'f—"l‘_l_ a21w2+ ' _|_ amlwmz 0
a12w1+ azzwz“l— v - Ay Wy = '12

) (12)

A, Wt AWt + AW = 0O
Obviously, from comparison of (11) and (12), we find that the solution to (12) should be
the solution to (11). So, there must exist the solution to (11). This means that one can
extract the second source signal. Sequentially, one can extract L source signals from the
mixed signals. However, the existence of the solution to (11) does not mean the existence
of the solution to (12). Therefore, at lest L. source signals can be extracted.

Also, we present an equivalent theorem

Theorem 4. If there exist I sub-matrices ;L of the size m X (n—1) such that l—l—a(gi) =
6(A), then, at least L source signals can be extracted.

Proof. Without loss of generality, assume that

diz2 diz *** dip
Al:_: iiiiii ’ il'l!

amn

a1

;{L=

A3 vee Ami A, L+1 QA mn

— —

Am2 Am,L—1
Since 14+0(A,) =06(A), one source signal s; (t) can be extracted. By eliminant method,

the mixture matrix can be transformed into

a1 diz ** A1y
A —
Am2  Am3 ° A mn _
By verifying
N _ala A4 QAlg ] “au a13 A1n ]
A, = . e : (13)
- Qp3 Qma " Qma  Am1 Qm3 " Qpa

if the vector a, =(a;; +***sa,.)" 1s a linear combination of the other column vectors of ma-

trix zzil , then i1t can be a linear combination of all the COltlﬂI"_IlIl vectors of A,. This means
rank(A,) =rank(A). It contradicts to the condition 1+06(A,)=6¢(A). Thus, the column

vector a, is not linearly relative to the each column vector of A,. It causes 1+rank(A,;) =

rank(A), i.e., 1+0(A,)=0(A). By Theorem 2, the second source signal can be extrac-
ted. By keeping on the procedure, L source signals can be extracted, Clearly, if 14+06(A.) =

o0(A), there must be 1+0(A;)=0(A,;). However, the inverse could not be held definite-
ly. Therefore, at lest L source signals can be extracted.

3 Algorithm of blind source separation

To illustrate the validity of the extractability theory, we will give some simulations
according to some algorithms. Now we present some algorithms.

We verify the fourth-order cumulant of the signal ;. From the model of extracting
signals and the properties of the fourth-order cumulant''?), we have

kut (u;) = kut(w' x) = kurt(wrAs) = kurt(zls) = Ez‘}kurt(sf) (14)

i=1

where w' A=2. As in general study, we assume that the source signals are of zero-mean
and unit vartance, i.e., E(ss' )=1. Therefore,

lz] 2 =wAA'w = wAE (ss"))ATw = wE(xx")w = E(w'x)? (15)
The target of extraction needs to guarantee that the variance of extracted signal u; 1s 1.
This is

E(u)! = E(wlx) =1 (16)
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By (15) and (16), we get the constraint

[z]* =1 (17)
From (14) and (17), when the sources are all super-Gaussian signals and under the con-
straint, we can extract the signal with the maximal fourth-order cumulant by maximizing
kurt(w'z). Contrarily, when the sources are all sub-Gaussian signals and under the constraint,
the signal with minimal fourth-order cumulant can be extracted by minimizing kurt(w'x). For
simplicity, this paper considers only the super-Gaussian signals (the algorithm for the sub-
Gaussian signals can be obtained by the same method). So, the optimal problem with the
constraint

max kurt (w' x) (18)
can extract one signal. By the definiEtTo; oflthe fourth-order cumulant, we have
kut (w'x) = E(w'x)' —3E*(w'x)* = E(wix)*' — 3 (19)
Moreover, setting V=FExx', the constraint (19) becomes
Ewx) =wVw =1 (20)
Thus,(18) 1s equivalent to
4'max J(w)

(21)

s.t. wVw—1=0
where J(w)=FE(w’x)*. The constant term can be ignored since it is irrelevant to w. To
solve the optimizing problem (21), we introduce the penalty function'’*, that is, (21) is
transformed into

max P{(w,f3) (22)
where P(w,)=FE(w'x)*—B(w!'Vw—1)“, and 8 is a large positive constant, If the constraint
cannot be satisfied, the function P{(w,) cannot reach the maximum, since the value of B 1is large.
Inversely, if the constraint is satisfied, we have max{P(w,£) } = max{J(w)}, 1. e., (22) 15
equivalent to(21). The optimizing problem with the constraint (21) is changed to the
problem (22) without the constraint. By using the steepest descent method, we get the
following learning algorithm. Because of

VW — apé‘:*ﬁ) — AEW ) xT (1) — 4B(w' Vw — DE(wT ) x" (1) (23)

the algorithm i1s
w(t+1) = w(t) +aEWwW (ODx())’x' (&) —afBw (OVw() —DEMW (0)x())x" (1)
(24)
For convenience. we use the ordinary method to transform the above algorithm 1n to a ran-
dom gradient algorithm:

w(t+1) = w(it) +aw (ODx(D)’x () —aBwW (H)Vw() — D) (w' ()x())x" () (25)

4 Simulating experiments

In the last two sections, we present the basic theory of separability and the algorithms
according to the theory. To verify the validity of the algorithms and the extractability the-
ory, we will give the simulations for the normal case and the morbid case. Form voice sig-
nals are taken from the website http://www. cis. hut. {fi/projects/ica/cocktail/cocktail
en. cgi as the source signals.

To judge the effect of the extraction, we use the similitude coefficient §;; as one of the
test index as in general cases, That is,

Cij = C(unsj) — | iui(t)sj(t) i/Jjuf(t)iSE(I) (26)
t=1 t=1 r=1

If u;=cs,, then {;, =1. This means the result of blind source separation can be different

from the source signals only in the amplitude. When «; 1s independent ot s;, the index sati-
sfies §;, =0.
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Fig.1 The source signals in each simulation

Simulation 1. At first, we consider the normal case 1), In this case, the number of
the observers is equal to the number of the source signals, and rank(A) =n. Take the
mixture matrix A= (A, ,A, ,A;,4,), whereA;,=(1,0.4,0.2,0.1)",A,=(0.65, 1, 0.5,
0.2)',A;=1(0.33, 0.43, 1, 0.35)" and A, = (0.2, 0.5, 0.6, 1)'. By computation, we
have rank(A) =4, the conditions for complete extraction are satistied. The result can be
seen in the following figures.

: UM
—20 —_—i - —20 ! —

0 5000 10000 15000 0 5000 10000 15000

b, Mixed signal x,(t) b, Mixed signal x,(¢)
20 — r 10 - - -
0 M OF—M
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0 5000 10000 15000 0 5000 10000 15000
b; Mixed signal x,(¢) b, Mixed signal x,(z)
10 - y— . ~ 10, —_— — s
~10 — ~10 Ta— =
0 5000 10000 15000 0 5000 16000 15000
¢, Extracted signal #,(z) c; Extracted signal #,(t)
5 - —pen 50 prerrr—— [ T =
—5 i — ! —-50 I I T
0 5000 10000 15000 0 5000 10000 15000

c; Extracted signal u;(z) c, Extracted signal #,(¢)
Fig. 2 Mixed signals and separated signals

The similitude coefficient matrix can be computed as &= ({,,8,,8;:,8,), where {; =
(0. 0047,0. 9858,0. 0296,0. 0273)", &, = (0. 0088,0. 0115,0. 9881,0, 0045)", &, = (0, 0103,
0.0201,0, 1154,0. 9239)" and §, = (0. 9911,0. 0105,0. 0384,0. 0037)". One can see the
good effect and that the all source signals are complete extracted.

Simulation 2. When the number of the observers is less than the number of the source
signals, that is, in the morbid case , m<n, we consider 2 observers versus 4 source sig-

. . . 1 1 0 17 L
nals. Taking the mixture matrix A= [ o1 1 11’ the result of the extraction is
20 r — 20 . - e ——
0 | OM
—20 —20 — N .
0 5000 10000 15000 0 5000 10000 15000
b, Mixed signal x,(¢) b, Mixed signal x,(¢)
10~ — -
OW
—104— - . ferrrer————
0 5000 16000 15000

¢, Mixed signal u,{¢)
Fig.3 No signal can be separated
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By theoretical analysis, Theorem 1 tells us the reason. Since for any 2 X3 sub-matrix
A; of the mixture matrix, we have c(A;) =2 and ¢(A)=2. There is no sub-matrix A, satis
fying 1+0(A;) =0(A). This causes that no signal can be extracted. Computing the simili-
tude coefficient vector, we have §, = (0. 3248,0. 3560,0. 4219,0. 4954). This clearly indi-
cates the failure of extracting signal u, (z). It illustrates the consistency of the theoretical
and simulation analysis.

Simulation 3. At last, we consider the morbid case 3). In this case , it has m_>n,rank
(A)<n. Let the mixture matrix be A= (A, ,A, ,A; ,A, ), where A, =(1, 0, 2, 0.5, 11T,
A,=(1,1,2,0.5, D" ,A;,=(0, 1,2, 0, 1)" and A,=(1, 1, 2, 0.5, 1)T. By computa-

tion, we have rank(A)=3<4. The result of extraction is

20 - Y Y 20|'_ ' T
0F*ﬂIl'ﬂ"'....H.“‘l.H.I'I...lﬂ“hﬂpﬂ.‘.'ﬂ.ﬂ* 0“*ll.'l.."H.I.I‘h..!'...."l"‘h‘lﬂl'.h‘.fi
— 20 L ) § — 20 [ L ———
0 5000 10000 15000 0 5000 10000 15000
b, Mixed signal x,(¢) b, Mixed signal x,(¢)
50 - - 50 - . ,
0 -.W 0 l——m—.—{
50 ' ' =50 ' ' .
0 5000 | 10000 15000 0 5000 10000 15000
b; Mixed signal x;(t) b, Mixed signal x,(t)
10 - ; 10 . '
o'—M-—w* U%‘M
_._]0 e pm 1 ] ] _.10 - i - b - —
0 5000 106000 15000 (0 5000 10000 15000
bs Mixed signal z:(¢) ¢, Extracted signal «,(t)
10 am ; 20 = ' ~
o——w UW
—10 ‘ L — —20 ' L
0 5000 10000 15000 0 5000 10000 15000

¢, Extracted signal u,(t) c; Extracted signal #,(t)

Fig. 4 Simulation 3. mixed signals and separated signals

Similarly, there exist two 2 X 3 sub-matrices A, i e, A = (A,,A:,A,) and ;{2 =
(A,,A,,A,). Hence, we obtain 6(A.) =2 and ¢(A) = 3. By Theorem 3, there are 2
source signals that can be extracted. From the simulation, we can see that the signals
u, (t) and u, () can be extracted successfully, while the extraction of signal u; (¢) 1s a
failure.

S Conclusion

This paper discusses the basic theory of blind source signal separation. A necessary
and sufficient condition of the separation is presented. Also, we give a result to determine
how many source signals can be extracted from the observed signals. Some algorithms
based on the basic theory are proposed. Under different cases, the simulating experiments
are made to verify the validity of our theory and algorithms. It is worthwhile to say that
the basic theory we presented is based on some information of the mixture matrix A.
However, in practice, the information of A could not be known. So, this is only a theore-
tical analysis. Whether we could discuss the basic theory only from the observed signals or
not? This 1s a problem that will be studied in the future.
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