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Abstract The problem of static state feedback robust H, control with regional stability con-
straints for the closed-loop system is considered. Both continuous and discrete-time systems with
polytopic uncertainty are investigated. A new LMI-based sufficient condition for the existence of
parameter-dependent Lyapunov functions i1s proposed. Static state feedback controllers required
are not only guaranteed to satisly all closed-loop poles to stay inside a specified region for all ad-
missible parameter uncertainties, but also provide an upper bound for the H, cost function, which
1s minimized using LMI convex optimization approach.
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1 Introduction

Performance analysis of systems 1s obviously a very important problem in control the-
ory. In particular, H, control is appealing since there is a well established connection be-
tween the performance index being optimized and performance requirements encountered in
practical situations-''*), For example, if the input is zero-mean stationary white noise of
unit covariance then, at steady state, the variance of the output is given by the square of
the H, norm.

One of the practical concerns of control design is its time-domain performance. Many
of these time-domain (transient as well as steady-state) performance specifications are de-
termined or influenced by the closed-loop system zeros and poles'®**!, While the standard
H, design i1s primarily concerned with stability and closed-loop performance specifications,
it says little about the transient performance. However, it is well known that the locations
of poles (such as stability degree) not only serve as an indicator of response speed but alsc
provide indirect tolerance against structured uncertainties. Therefore, 1t is often the case
that a satisfying feedback design must impose constraints on the location of the closed-loop
poles.

In this paper, we consider the problem of robust H; controller that satisfies additional
constraints on the pole location of closed-loop with polytopic type uncertainties. Although
some methods have been proposed before, the main drawback associated with these me-
thods is that a single Lypunov matrix is used to guarantee the desired closed-loop multiob-
jective specification or must work for all matrices in the uncertain domain and ensure the
poles of the closed-loop are clustered in some regions. This condition is often too conserva-
tive if used with time-invariant systems. The same reasoning can be drawn for the robust
H, performance. In this paper, we explore a new LMI characterization of minimum H,
with the pole constraint regions. This idea was first introduced in [ 5] for linear continu-
ous-time uncertain systems, and for linear discrete-time uncertain systems in [ 6~8]. The
results obtained in this paper go beyond the ones attainable by the quadratic approach for
time-invariant parameters uncertainty. It is expressed as LMIs and exhibits a kind of sepa-
ration property between the Lyapunov matrices and the uncertain dynamic matrices, In
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terms of the new LMI characterization, sufficient conditions are obtained for the existence
of an upper bound on the H, norm of closed-loop system with pole clustering in specified
regions of the complex plane. By minimizing this upper bound we obtain explicit state
feedback gain expressions for a controller that places the closed-loop poles within the spec-
ified pole-constraint region. Finally, two numerical examples are presented to illustrate
the theory.

2 Continuous-time linear systems
2.1 Problem statement
We consider the following class of uncertain LTI systems

x = Ax () + Byw() + Byu() (1)
y=Cx()+ Du(t)

where x(2) € R" is the state, u(¢) € R" is the control input, w(¢) € R™ is disturbance input,

A,B,,C,D are uncertain matrices which are assumed to belong to a polytopic convex do-

maln:

A B, B TA(E) B;(& B, (& Y. TA: B, By |
-t o : ’ $
c b ol =ilce p® o JT2&c b o €9 @
where (2 1s the unit simplex
p
()= {(515529'"35;.):2 51*:19 8,20} (3)
1=1

Let u= Kx (¢z) and define the closed-loop matric_es A=A+B,K and C =C+ DK. Suppo-

sing that a state feedback gain K is calculated in such a way that A is asymptotically sta-
ble, the closed-loop transfer function from w to z is given by

T..(s) =C[sI —A]'B, (4)
The H, norm for a stable transfer matrix T,.,(s) can be defined as
| T li= 5=| Tr{Twu(e™) }do (5)

Lemma 1. If there exists matrix K such that A is asymptotically stable, then the
H,-norm of T,, (s) 1s given by

| T... 3= Tr(CL.C") = Tr(B{L,B:) (6)

where L, and L, are controllability and observability Gramians respectively, that is
AL, +L.A"+ B Bf =0 (7)
AL, +L,A+C"C=0 (8)

Definition 1. The uncertain system (1) is said to be robustly d-stable if all eigenvalues
of uncertain system matrix A lie in the disk D(—a,r) with center —a+ j0 and radius »
with respect to real polytopic uncertainty, where a>0 and 0<{r<Za,

Similarly, the uncertain system (1) is said to be robustly d-stabilizable if there exists
a linear state feedback control law u(z) =Kx(2) , K& R**", such that the resulting closed-
loop system is robustly d-stable.

The problem to be addressed in this section is to determine the state feedback u(2) =
Kx(t) such that

1) the closed-loop system is robustly d-stable

2) an upper bound of the worst case performance J with respect to the system uncer-
tainty is minimized, where

J = max{ || T.o(s) || 2} (9)

te 0
To motivate the technique used in this paper, the following Lemmas are introduced.

Lemma 251, Let A€ R*" be a given matrix. The eigenvalues of A belong to D(—a,
r) if and only if there exists a symmetric matrix P€ R**" such that
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r — P! r"l(A-l—aI:)'“<0 (10)
r(A4al)? — P -

Lemma 3 (Reciprocal Projection Lemma)'® . Let U be any given positive definite ma-
trix. The following statements are equivalent.

¥+ S+ ST <0

1)
11) the LMI problem

v+ U— (W W)

S+ W

1s feasible with respect to W,

2.2 Main results

ST _|L WT
U

(12)7

il

< 0

(11)

(12)

Theorem 1. Let >0 be constant. The following matrix inequality conditions, with
positive definite matrix variables Y, X, and general matrix variable V, are equivalent.

YA +A'Y+A'YA+ Y4 7rICTC <O

Proof.

(V4+VT) VIATL X VT VIAT VT yICr
AV 4+ X X 0 0 0 0
v 0 X 0 0 0
AV 0 6 —X 0 o | <Y
v 0 0 0 —X 0
v 0 0 0 0 —

(13)

(14)

(13)=(14). From (13), using Lemma 3 with ¥ :=A'YA+Y+A"'C'C, S=AY and

any given positive definite matrix U yields

ATY +WT-

o |<o

-l

: == Wml

(15)

< 0

FA'YA+ Y+ YICTCHU— (WHWT)
. YA +W
By Shur compiement operation with respect to the term Y and the congruence transforma-
tion
vV 0 0
0 X 0/, with X:=Y"',V
0 0 X
the 1nequality above in turn becomes
VIA'XTTAV+ 7' VIC'CV+ VUV — (V4 V)
AV + X
1%

P

VIAT+ X VT-
—XUX 0
0 — X

By Shur complement operation with respect to the terms VIAT X 'AV, Y 'VIC'CV and

VUV, the above inequality becomes

The above ineéuality implies (14) with U :=X"",
(14)=(13). If (14) holds, using Lemma 3 and Shur complement formula we can get
that (13) holds with U :=X"" and Y=X"'. The proof is completed.

Theorem 2. Let f=a(+*

ously for all i=1,2,+,p:

—a®) 1,

Tr(Z) <1

(VAL VT) VIATLX VT VIAT V' VICT-
AVEX  —XUX 0 0 0 0
v 0 -X 0 0 0
AV 0 0 —X 0 o |<V
v 0 0 0 —U' 0
CV 0 0 0 0 — 7y 'I

If the tollowing (vertex) conditions hold simultane-

(16)
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- X; By
17
BT 7 _> 0 (17)
—(V4+VH VIAT 4+ X, VT V©IA] Vv VIC!T
AV 0 0 —aX, 0 o | <P (18)
i C.V 0 0 0 0 — I _
then system (1) is robustly d-stable, and || C(sI—A)'B, || ,<7.
Proof. Suppose that (17) and (18) hold for all i=1,2,+--,p. We have
£ X, B
Z{]E.— BT oz |70
—(V4+VD) VAT 4+ X, V' VA VP VICH
4 AV 0 0 —aX; O 0 ‘
_ C,V 0 0 0 O T 71 _
which impies
- X B -
g7 Z‘_> 0 (19)
—(V4+VH VIATH X VT VAT VT vICH
AV 4+ X — X 0 0 0 0
vV 0 — X 0 0 0
AV 0 0 —aX o0 o |<VY (20)
V O 0 0 — X 0
CV 0 0 0 0 — I

From Theorem 1, (20) is equivalent to the following inequality with positive definite ma-
trix variable Y

YA +A'Y+a'ATYA+B'Y+7ICTC <O (21)
By (21), we have
YA +ATY +a'ATYA +B'Y <0 (22)
YA+ATY+7ICTC <O (23)
In view of Lemma 2 and (22), we obtain 0(A) € D(a,r).
Using Lemma 1, we obtain
| C(sI —A)7 B, | 2 = Tr(Bi PB;) (24)
where P is observability Gramians, that is,
A'P+PA+C'C=0 (25)

Comparing (25) with (23), we have

P<yY
Noting (16) and (19), we have

| C(sI —A)'B, || 2 = Tr(BIPB,) < YTr(BiYB,) < YTr(Z) =¥

Hence, system (1) is robustly d-stable, and || C(sI—A)~'B, || ,<<¥. The proof is com-

pleted.

Now, with the result of Theorem 2, it is possible to determine a matrix gain K to
minimize the upper bound of H; norm of the closed-loop system (4). The next theorem

gives the optimal characteristics to the gain K.
Theorem 3. If the convex optimization problem
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J = minTr(Z) (26)
- X, By-
BT 7 _> 0 (27)
— (V+VH) L VT VAN
Vi, — X, 0 0 0 0
\% 0 — X 0 0O 0
., 0 0 — X, 0 0 < 0 (28)
vV 0 0 0O — BX; 0
Vs 0 0O 4, 0 — T

Where 1 =1 !2 o **° ap y W}g =A1V+ Bz,;R _‘_Xl ’ WH :A,-V_i"BgiR ’ 1F15 =C,V D!R ’ hﬂS d SO-
lution in the matrix variables Z>>0, X, >0,i=1,2,*,p. Rand V for all i=1,2,++,p, then
system (1) is robustly d-stabilizable with state feedback gain K=RV~!,and || C(sI—A)'B, ||,
<J.

Proof. Since —V—V7<(0, V is nonsingular. Taking K=RV™', A,;=A,+B,K, C,=
C.+D,K, the above condition can be rewritten as

Tr(Z) <1
;{I Blg4>_>o
— (V+VT) VTAT+X, VI VTAT VT VTCI(5)]
AV + X, — X, 0 0 0 0(6)
v 0 — X, 0 0 0(7) <o
AV 0 0 —aX, 0 0(8)
1% 0 0 0 — BX, 0(9)
C.v 0 0 0 0 7

which is a transposed version of Theorem 2 by linear combination. Thus, (26)~(28) im-
ply that system (1) is robustly d-stabilizable with state feedback gain K = RV™', and

” E(SI_E)HFB} “ 2<J.

3 Discrete-time case
3.1 Problem statement
[.et us consider a discrete-time linear system whose dynamic behavior is given by the
following difference equations
X1 = Ax, + Byw, + Bu,
z, = C,x, + Du,
where x, € R" is the state variable, u#, € R is the control variable, w, € R™ is the external
disturbance input and A, B, ,C,D are uncertain matrices which are assumed to belong to a
polytopic convex domain:

(29)

rA B, B;- . TA§) B,(&) Bl(é)_____ N.TA; B, By~ |
c p ol T Wlcey bp& o 17 ?_—;;'E"_q D, o J05€Q) GO
where {2 i1s the unit simplex
2
{) 1= {(615529'"96;,):2&=11$,'2$0} (31)
=1

Let u,= Kz, and define the closed-loop matrices_K=A+BgK and C=C+ DK. Supposing

that a state feedback gain K is calculated in such a way that A is asymptotically stable, the
closed-loop transfer function from w to z 1s given by

T..(s) =C [zl —A]'B, (32)

The H, norm for a stable transfer matrix T,, (s) can be defined as
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| T... || 3 = 2—-1;J Tr{T., (e™)'T,, (&) }dw (33)

Lemma 4. If there exists matrix K such that A is asymptotically stable, then the
H,-norm of T,,(s) is given by

| T.o |2 = Tr(CL.C") = Tr(BTL,B:) (34)

where L. and L, are controllability and observability Gramians respectively, that is,
AL, A"—L.+B,Bf =0 (35)
ATLLA—L,+C'C=0 (36)

Definition 2. The uncertain system (10) is said to be robustly d-stable if all eigenval-
ues of uncertain system matrix A lie in the disk D(a,r) with center @40 and radius » with
respect to real polytopic uncertainty, where |a|+r<Z1.

Similarly, the uncertain system (1) is said to be robustly d-stabilizable if there exists
a linear state feedback control law u, (z) = Kx,, K &€ R*™", such that the resulting closed-
loop system is robustly d-stable.

The problem to be addressed in this section is to determine the state feedback u(z) =
Kx (t) such that

1) the closed-loop system is robustly d-stable

2) an upper bound of the worst case performance J with respect to the system uncer-
tainty 1s minimized, where

J = max{ || T...(2) || -} (37)
fcn

The following Lemmas are needed to derive our results.

Lemma 5. For any given £>>0 the inequality || C(zI—A) B, || < u holds for all
A;»By;yB,;,C;and D;(i=1,2,+,p) if there exist symmetric matrices P;, W, i=1,2,°-,
p and a matrix G of compatible dimensions satisfying the following LMIs for all i=1,2,

oy P
- W, C.G .
G'CT G+G —P, 7" (39)
3 Pi A:G Blf“
G'A; G+G"—P, 0 [>0 (40)
_ Bj; 0 I _

Lemma 6. Let A€ R"™" be a given matrix, The eigenvalues of A belong to D(—a,r)
if and only if there exist a symmetric matrix P€ R"*" and matrix GE R**" such that
P AG + aG 7
GTAT 4 aG" G+G"—pJ” " (b
Proof. Sufficiency: Since the matrix [ —I] has full rank, (41) implies that

r'P AG 4+ ac — I 7
-1 A_I_aI][GTAT—I—aGT G+GT——P][AT+QI_>O (42)
which implies
P—(A+alDP(A+a)' >0 (43)
Using Shur complement formula, we obtain
- — P r (A +al)
Lr'(A+al)? — P }< 0 (44)

(44) is the dual of (10) in the transformation A—AT,
Necessity: Assuming (10) is satisfied, (44) holds. Using Shur complement, (44) is
equivalent to
- 2P
r AP + aP :l> O

_PAT + aP P (49)
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Choosing G=G' =P, we obtain (41).
3.2 Main result

Theorem 4. Let f=a° —7%. If there exist positive definite matrices P,, Q., W., i=1,
2,°**,p and a matrix G of compatible dimensions satisfying (38), (48), (40) and the fol-
lowing LMIs for all i=1,2,,p

_ , _
Grar oG G}:-G(;TLj“iGc;g,,_,> ’ (46)
then system (29) is robustly d-stable, and || C(zI—A)'B, || ,<7.

Now, with the result of Theorem 1, it is possible to determine a matrix gain K to
minimize the upper bound of H; norm of the closed-loop system (32). The next theorem
gives the optimal characteristics to the gain K.

Theorem 5. If the convex optimization problem

minJ = Tr(W) (47)
) W C.G+ D)V -
GTCT VDT G+G —p, )7 Y (48)
- P, AG+ B,V By
G'Al +V'B;, G+G'—P, 0 |>0 (49)
i B, 0 I
] ?'BQi AG+ B,V —aG ]
GTAT L VB — o™ GaG —0 |70 (50)

has a solution in the matrix variables P, >0, Q,>0, :=1,2,+,$, matrices G and V {or all
i=1,2,*+,p, then system (29) 1s robustly d-stabilizable with state feedback gain K =
VG™!, and || C(zI—A)'B, || ,<J.

Proof. Since P; and Q, are positive definite, G+G' >0, G is nonsingular. Take K=

VG™', A=A, +B,K, C.;=C,+D,K. The conditions can be written as

min/ = Tr(W)
- W CG 1}0
LGTCY G+G'—P. 7
P, AG
GTAT G+GT'—P,|>0
T. O
- D _
[ ?'ZQI‘ EIG“’QG ]

> 0

LGT AT —aGT G+ G' —Q,
which is a transposed version of Theorem 4. Thus, (47)~(50) imply that system (29) 1s
robustly d-stabilizable with state feedback gain K=VG™', and | C(zI—A)"'B, || .<J.

4 Examples
Example 1(continues-time case). Consider the linear continuous-time parameter un-
certain system (1) with

—1 27 -1- -0

Al:_-——]_ __2_5 1}_;_1—1 BEl:Ll_J’ CII[]. 3]1 D1:1
—1.5 1.2 1 "0, 6° -0

AZ:'::-_O‘,? ___1'5—1 Blz——]— 1 _9 Bgz—-—l'SJa 2—-[0.8 2]1 Dg—-0.7
— 1.2 2.3 - 1. 27 -0

As=_1.9 —a3)Be=| 1 JpBu=[53) =Lz 4] D=2

Applying the method proposed in [ 1] where a single Lyapunov matrix is used, the convex
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optimization problem is infeasible, while in the light of Theorem 3 it has been obtained u-
sing the software package LMI Lab that system (1) is robustly d-stabilizable with center
—24;0 and radius 1, the optimal value of H; of the closed-loop system is 28. 3314 with
state feedback u=[0. 2370 —0.2824]x, the Lyapunov matrices at three vertices of the
ploytope are
- 0.5487 —0, 17577 2.4848 —0.0622(21) 4
A = | —0.1757 0.1307 |’ Az = [-—— 0. 0622 2. 3822 :[X 107
- 0.7962 —0,3137(22) 7
L— 0. 3137 0. 2054 J
respectively. Observe that X, is very different from X, and X; in the sense of norm of a
matrix. Obviously, it will give more conservative result if a single Lyapunov matrix X that
enforces multiple constraints is used.

Example 2(discrete-time case). Consider the linear discrete-time parameter uncertain

system (29) with

X3=

r—0.50 0.807 -0. 10 r 1 -

Av=| 05 o 95" Bn=|, 10], Bu=|_,|»Ci=[1 0.3], Di=0.1
—0.65 0.85" 0. 267 -1 T

Az“[ 0.40 0.35)° B“‘"_o.?,z_’ B = —0.8) C,=[0.8 0.2], D,=0.2
r—0.55 0.13 r0, 20" 1 -

A=10.28 o 10]’ 5= 1019 23”‘"[-—0.86_" G=L.z 0.4), Dy=0.2

Applying the method proposed in [ 1] where a single Lyapunov matrix is used, using the
software package LMI Lab, the convex optimization value of J is 0. 4040. Applying the
formula for regional constraints derived in [ 4 |, the convex optimization problem is infeasi-
ble. While in the light of Theorem 1 it has been obtained that system (29) is robustly d-
stabilizable with center 0. 5+ 0 and radius 0. 5, the optimal value of H, of the closed-loop
system 1s 0, 1735 with state feedback u, =1[0.7926 —0.4314 ]x,. Hence, for these two
examples, the robust performance. with regional stability constraints of this paper gives
less conservative results than those obtained by the methods of [ 1].

5 Conclusion

We have addressed the problem of robust H, control for linear systems with polytopic
type uncertainties and d-stability constraints. Both linear continous- and discrete-time un-
certain systems are considered. The results are based on a new extended LMI characteriza-
tion that does not involve the product of the Lyapunov and the system dynamic matrices.
State-feedback controller parameterizations that are able to linearize the extended H, con-
troller synthesis problem have been applied to the multiobjective problem. The approach
presented here provides a way to reduce the conservativeness of the existing conditions by
decoupling the control parameterization from the Lyapunov matrix.
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