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Pole-Assignment Fixed-Interval Kalman Smoother
and Wiener Smoother"
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Abstract DBased on steady-state Kalman filter and white ncise estimators, and according to the
pole-assignment principle of the control theory, the pole-assignment f{ixed-interval steady-state
Kalman smoother and Wiener smoother are presented. They avoid computation of the mitial opti-
mal smoothing estimates and can rapidly eliminate the effects of the nitial smoothing estimates by
assigning the poles of the smoothers, so that they have a prac-tical stability in the finite fixed inter-

val. A smmulation example shows their effectiveness.

Key words Fixed-interval Kalman smoother, {ixed-interval Wiener smoother, pole-assignment,
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1 Introduction
Fixed-interval smoothers can be applied to reconstruction for orbits of man-made earth
satellite and missile. Several fixed-interval Kalman smoothers have been presented in [ 1 ~4 ],
their disadvantages are to require the computation of optimal initial values, which increa-
ses computational complexity. In this paper, based on steady-state Kalman filter, the
pole-assignment principle of the control theory i1s app.ied to the state estimation for sto-
chastic systems, and the pole-assignment fixed-interval steady-state Kalman smoother and
Wiener smoother are presented for the completely observable and completely controllable
systems. They avoid computation of optimal smoothing initial values and can rapidly elimi-
nate the effects of the initial smoothing estimates by assigning the poles ot the smoothers,
so that they have a practical stability in the tinite interval,
Consider the discrete time-invariant linear stochastic system
x(t+4+ 1) = dx{(¢t) +Twi(t) (1)
y(t) = Hx(t) +v(1) (2)
where the state x(¢) € R*, the measurement y(z) & R", @,y H are the constant matrices
with compatible dimensions.
Assumption 1. w(z) € R" and v(¢r) € R" are independent white noises with zero mean
and variance matrices Q>0 and R>0, respectively.
Assumption 2. The initial state x(0) with mean Ex(0) =y is independent of w(¢) and
v(t).
Assumption 3. The system is completely observable and completely controllable.

The problem is to find the steady-state fixed-interval smoothers ¥ (¢| N) based on
measurements (y(N),y(N—1),+-,y(0)), where N is fixed, t=0,1,++-,N.

2 Lemmas
Lemma 1'! . For system by (1) and (2) with Assumptions 1~3, the steady-state Kal-

1) Supported by National Natural Sctence Foundation of P, R, China(69774019), and by Natural Science Foundation

of Heilongjang Province(F01-15)
Received June 18, 2002;in revised form Apni 22, 2003

W H B 2002-06-18; B4 HE] 2003-04-22




240 ACTA AUTOMATICA SINICA Vol. 30

man predictor is given by

¥+ 1 ) =0x(t|t—1)+Kpe(2), €1) =y@)—Hx(|t—1) (3)
K=3H'[HZH"+RI]"', Kp =K (4)
where the steady-state prediction error variance matrix 3 is the unique positive detinite so-
lution of the following steady-state Riccati equation
S=¢[>—3H"(HZH" +R)'HX]®' +rQr' (5)
Lemma 2!, For system by (1) and (2) with Assumptions 1~3, the unified steady-
state white noise estimators are given by

,.. 0t} t+N)=0¢|t+N—D+M(N)EG+N), 0=w,v (6)
where 0(¢|t+N)=0, N<0, and M_(0)=0, M, (OO=R[HZH"+R]!,

My(N) = Dy[ (I, — KH)'®$' ["'H'[HSH"+R]7', N>=1 (7)

= Qr', D,=—RK'®' (8)

and the innovation &(¢) can be recursively computed by (3) with arbitrary initial value x(0|—1).
Unified white noise Wiener smoothers are given by
0t | t+N) = J ' (g"HOMVW (g DHAWG )yt + N), = W,V (9)
where ¥p=(®—KyH) is a state matrix-'’, i.e., its eigenvalues all lie inside the unit cir-
cle. ¢~ ! is the backward shift operator, and we define ¢, (¢7') =det(I,—W¥pq™ '), A(qg™ ") =
o, (g ) I,—Hadj(I,—q ' ¥s)Kpg™', and

M (g!) = EMm)q*-” (10)

Lemma 3'*), For system by (1) and (2) Wlth Assumptions 1~ 3, the steady-state
fixed-point Kalman smoother is given by

x(t|lt+))=xCG|t+j—1)+Ke(t+7) (11)
with the initial value ¥(¢{t—1), j=0,1,2,++, and K,;=3[ (I, —KH)'® VH'| HZH'+R]™".

3 Pole-assignment fixed-interval steady-state Kalman smoother
Theorem 1. For system by (1) and (2) with Assumptions 1~3, the pole-assignment
fixed-interval steady-state Kalman smoother is given by
x| N)=vxt—1| ND+TI'wi—1 | N)—-TyyG—1)+T,v(t—1 | N) (12)
where =&+ T, H, and we can choose matrix T, to assign the eigenvalues of ¥ arbitrari-
ly, and make ¥ stable. In the finite fixed-interval { 0, N ], it has a practical stability in the
tollowing sense: case 1) All eigenvalues of ¥, are near origin. For the arbitrary smoothing

initial estimate ¥(0|N), a matrix T, is chosen such that all eigenvalues of ¥ are sufficient-
ly small, then the effects of the initial values ¥(O| N) and ¥x(0| —1) of smoother (12) will
rapidly decay to zero. Case 2) There exists an eigenvalue of ¥, near the unite circle. If (0|
—1) is taken as the optimal initial value X(0| —1) =g, and all eigenvalues of ¥ are as-

signed sufficiently small, then the effect of the initial value x(0| N) will rapidly decay to
Z€T0,

Proof. Taking the projection of each term on both sides of (1) yields the steady-state
fixed-interval Kalman smoother

¥(t | N)=ox(t—1 | ND+T'w(i—1]| N) (13)
and premultiplying (2) by an n X m matrix T, and taking the projection operation yields
ToyG—1D)=T,Hx(:t—1|N)Y+T,v(t—1| N), which plus (13) yields (12). From As-
sumption 3, (@, H) 1s a completely observable pair. Hence, by choosing T, such that the
eigenvalues of ¥ are assigned arbitrarily specified A;, |A; | <1", ¥ is a stable matrix.

From (6) we know that the computation of white noise estimator w(z| N) is dependent on
the innovation process €(¢), while the computation of the innovation &€(j) 1s dependent on
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the initial values X(0} —1), so that the computation of smoother (12) is dependent on both
initial values (0| —1) and X(0[N). Arbitrarily taking two sets of initial values of (12) as
(¥’ (0O|N), x| —1)), i=1,2, from (3), (6) and the initial values ¥'* (0] —1), we
have the corresponding Kalman predictors ¥’ (t{¢t— 1), innovations & (¢), white noise
estimators w"” (t—1|N) and ¥ (t—1IN), i=1,2, and from (12) we have the corre-

sponding two fixed-interval Kalman smoothers ¥ (¢| N). From (11) we have the non-re-

cursively steady-state fixed-interval smoother
N—t

| N) =32 t—D 4+ D Ket+ ) (14)

j=0
For the above initial value 'V (0| —1), i=1,2, using Lemma 1 and (14) yields two corre-

sponding non-recursive smoothers ¥;” (¢ | N), and from the asymptotic stability of the
steady-state Kalman predictor x(z{t—1)-"', with time 7 increasing, we have

6,(t) = XV N)—x2CG | N)]—=>0 (15)
and for case 1), we have that 0,(¢) rapidly converges to zero. If the smoothing initial value

of (12) is taken as x,” (0 N), i=1,2, then applying the uniqueness of projection yields

the results computed by (12) to be numerically identical to ¥{” (¢| N), so that ¥V (¢| N) al-
so satisfies (12).

Setting 0°° (£)=x"" (1| N)—x." (¢| N), from (12) we have the difference equations
0 (t) = (t—1), i=1,2 (16)
where 6V (¢)=1[6{" (¢),+-+,0." () ]". Assuming that ¥ is assigned to have n different real
A;| <1, and the corresponding » linearly independent eigen-

vectors are @, = a;; s s*** @, | yi=1,2,*,n, the difference equation (16) has the gener-
)

ElgE}l’l VEIILIES /1,-,1':1,2,‘",71,

al solutions **
07 (t) = Al +cV Al 4 lPa A, 1 =1,2 (17)
where the coefficients ¢{” are determined by the initial values 6’ (0). We rewrite (17) in
the component form
V(1) = ciVa A + s apd; + o+ ala Ay = 1,240 m, 1 = 1,2 (18)
Letting A, =max({A; [+ [A; |y, A, [)yci=max(|ci’a; [j,k=1,,n3;1=1,2), we have
L) <K ek, J=1,2,,n, 1 =1,2 (19)
Taking sufficiently small A, with |A,| <1, such that A,, is sufficiently small, in finite inter-
val [0, N |, with time ¢ increasing, 0’ (¢)—0 rapidly. Noting that
0(t) =P | N)—xP @ | N)=0V()—0%(t)+0,(t) (20)
we also have 8(¢)—0 rapidly, i. e., the effects of the initial values decay rapidly.
For case 2), 0, (¢) will converge to zero slowly, which will delay the convergent

process of 8(¢). To elim:nate the bad effect of ¥, to the convergent rate, we should set
the initial value ¥(0| —1) of (12) as the optimal initial value ¥,(0] —1)=g. In fact, on
the one hand, based on the optimal initial values ¥,(0| —1) and (3) and (14), we can ob-
tain the steady-state optimal smoother %, (z| N). According to the uniqueness of projec-
tion, if (12) with the initial value ¥(0|N)=x,(0| N) is computed, %,(z! N) also satisfies
(12). On the other hand, based on the optimal initial values x,(0| —1) and arbitrary ini-
tial value X(O|N), using (12) yields the corresponding smoother x(z| N). Since x(z|{ N) and
x,(t| N) both satisfy (12) with the same initial value %,(0|—1), setting 6(¢)=x(t|N) —

¥, (t| N), we have that () =W¥0(t—1). Hence we can assign the eigenvalues of ¥ suffi-
ciently near origin, so 6(¢) converges to zero rapidly with time ¢ increasing, which means

that X(z| N) can approximate to the optimal smoother %,(¢| N) rapidly. The proof is com-
pleted.
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Remark 1. Given the initial value ¥(0] —1), since the second and fourth terms on the

right side of (12) can be computed with the initial value ¥(0| — 1), they are known.
Hence the poles of the smoother (12) are determined by det(I,—q ' ¥) =0 or eigenvalues
of ¥, Therefore the smoother (12) with eigenvalues of ¥ is called pole-assignment smoot-

her.

4 Pole-assignment fixed-interval Wiener smoother
Theorem 2. For system by (1) and (2) with Assumptions 1~3, the pole-assignment
fixed-interval Wiener smoother is given by

0, (g P(g7") x(t | N) = Kn,, (g7 y(N) (21)
where ¢~' only operates on the time ¢ of X(¢| N), ¢,(¢g” ") is defined by lemma 2, ¥ is de-
fined by Theorem 1, and

J(g') =det(I,—qg'¥), Kn.(¢g") =adj(l,—qg'¥Ty.(g"),
Tw.(q") = M. (g DAWQ™?) — ¢, (g VToqg 7" + ToMi_, (g7 DA(g)  (22)
where A(g™') is defined by Lemma 2, T, is defined by Theorem 1. If all eigenvalues of ¥,

are near origin and we choose T, to assign sufficiently small eigenvalues of ¥, then the
Wiener smoother (21) can rapidly eliminate the effect of arbitrary smoothing initial values

(x(0IN),++,x(Z2n—1|N)), and has a practical stability.

Proof. (12) can be expressed in the transfer function form as

Xt | N =U,—q¢g W' I'wG—~1 | N)—TyyG—D4+TwGt—11 NY] (23

Substituting (9) and (I, —q¢ ' ¥) '=adj(I,—q ' ¥)/¢(g™") into (23) yields (21) and
(22). Similar to the proof of the case 1) in Theorem 1, the practical stability of (21) can
be proved. The proof is completed.

Remark 2. K,.,(g ') in the fixed-interval Wiener smoother (21) is a polynomial ma-
trix with time-varying degree.

I

S Simulation results

Consider system by (1) and (2) with ¢== _é 8-, ['= _i-, H=[1], Q=0.1, R=

-t

0.1, x(t)={x,(t),x, () |', and the initial value x(0)=[0,01", where w(z) and v(z) are
independent Gaussian white noises. Setting N =200, the problem is to find the pole-as-

signment fixed-interval steady-state Kalman smoother x(z|200).

We can easily verily that this system 1s completely observable and completely control-
lable, and the transition matrix @ is an unstable matrix. Hence from Theorem 1 we have
the pole-assignment fixed-interval Kalman smoother (12). We can obtain the eigenvalues

A, =—0.1459, A, =0 of ¥,=®— K,H, which are near origin, so the initial value ¥ (0|
—1) can be chosen arbitrarily. Case 1): choose Ty,=[ —0.24 —0.46]" to assign the ei-

genvalues of =0+ T, H as A, =0.1, 4,=0. 2. Setting the smoothing initial value x(0|
200)=[10,50]", the simulation results are shown in Fig. 1 and Fig. 2, where the solid
lines denote the true values, the dashed lines denote the estimation values. We see that the

smoother ¥(z/200) can rapidly approximate to the true value x(z) by assigning the eigen-
values of ¥ near origin. Case 2): choose T,=| —0. 0067, 0. 7067 ] to assign the eigenval-

ues of ¥ as A, =0.8, A,=0.9. Again Still setting the smoothing initial value ¥(0]|200) =
110,50 )", the simulation results are shown by the dash dot lines in Fig. 1 and Fig. 2. We
see that the smoother X¥(¢|200) will have a transition process gradually to approximate to

the true value x(z), if the assigned eigenvalues of ¥ are near the unite circle. This shows
that the smoother defined by (12) can rapidly eliminate the effect of the initial smoothing
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estimate X(0|200) as long as the assigned eigenvalues of ¥ are sufficiently small.
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