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Abstract For the discrete stochastic control systems with correlated noises, using the Kalman fii-
tering method, based on the CARMA innovation model, a unified optimal fixed-interval white
noise recursive Wiener smoother is derived. It contains high degree polynomial matrices with coef-
ficient matrices exponentially decaying to zero. Further, by the truncation method, the corre-
sponding fast suboptimal fixed-interval white noise Wiener smoothing algorithm is presented,
which obviously reduces the computational burden. The error formula of the smoother and the
formula of selecting the truncated index are given. A simulation example for Bernoulli-Gaussian
white noise shows the effectiveness of the proposed results,
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1 Introduction
In oil seismic exploration'!?, an explosive is detonated below the earth's surface, so
that the seismic waves are generated and reflected in different geological layers, Oil explo-

L1]

ration is performed via the reflection coefficient sequence, which can be described by Ber-
noulli-Gaussian white noise. Estimating white noise reflection coefficient sequence has im-
portant application for discovering the oil field and determining the geometry shape of oil
field. Since the reflection coefficient sequence 1s the input to the receiver, estimating the
input white noise 1s called deconvolution or input estimation. The white noise estimation
theory for systems with uncorrelated noises has been presented by Kalman filtering method
in | 2]. The fixed-interval optimal input white noise smoother for systems with correlated
noises has been presented by Kalman filtering method in [ 3]. Further, the unified fixed-
interval optimal input and measurement of white noise smoothers tor systems with correla-
ted noises have been presented in [ 4 ]. But the disadvantage of above optimal white
smoothers is that to compute the Kalman filter gain, variance matrix of prediction error,
and inverse of innovation variance matrix is required each time, This yields a large compu-
tational burden. In this paper, based on the Kalman filtering, a unified fast suboptimal
fixed-interval white noise Wiener smoothing algorithm is presented by the truncation meth-
od, which obviously reduces the computational burden and has a satisfactory accuracy.

2 Problem formulation
Consider the linear discrete-time stochastic control system with correlated noises
x(t+1) = Ox(t) + Bu(t) +T'w(et) (1)
y(t) = Hx () +v(¢) (2)
where the state x(¢) € R", the measurement y(z) € R”, w(t) € R is the input white noise,
v(t) € R™ is the measurement white noise, u(¢t) € R? 1s known control input, @,B,I"and H
are constant matrices.
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Assumption 1. w(z) and v(¢) are correlated white noises with zero mean, and

“w() - g rronal @ ST
E Lv(t)_[w (7) v (1)]1—-— o

ST
where E denotes the mathematical expectation, T denotes the transpose,d, =1,68,, =0(17%j).

Assumption 2!, (P, H) is a completely detectable pair, (@,I'Q.) is a completely sta-
bilizable pair, where we define that

®=¢—JH, J=TI5Q7, Q.Qi=Q.—SQ.,'S" (4)
The problem 1s based on measurements (y(N),y(N—1),++) and controls (a(N—1),
u(N—2),-+), to find the steady-state optimal fixed-interval white noise Wiener smooth-

ers w(t|N) and v(¢|N) of w(t) and v(¢), which are derioted by a unified symbol é(tl N,
0=w,v, and to {ind the corresponding fast suboptimal smoothers 8. (| N), t=1,++, N,
where the positive integer N 1s called the length of {fixed interval.

e

(3)

3 Steady-state Kalman predictor and CARMA innovation model
Under Assumptions 1 and 2, from [ 6 ] there exists the steady-state Kalman predictor

x(t4+1})8) =Wpx(t|t—1)+ Bu(t) + Kp y(t) (5)
oy =HEG | =D +e(0 (6)
P::(D‘_KPHa KP:(pKa . p:Kﬁ,—i"J (7)

where the innovation process €(¢) & R™ 1s white noise with zero mean and variance matrix
Q.. and K is the steady-state Kalman filter gain, and

Q =H>ZH +Q,, K=ZIZH Q (8)
and the prediction error variance matrix 3 satisties the steady-state Riccati equation
S=@¢[3S—3H"(HZH"+ Q) 'HX]®" -+ I'(Q. — SQ;' S"HOI" (9)

which can simply be solved by iteration “*!. It can be proved "*! that ¥, is a stable matrix,
i. e.y all eigenvalues of ¥, lie inside the unite circle. Introducing the backward shift opera-
tor g”'y (5) can be written as

x(tlt—1D)=U,—q¢g'¥) ' But— 1)+ K,y(t—1)] (10)
where I, 1s the n Xn unity matrix. Substituting (10) into (6) yields the controlied autore-
gressive moving average (CARMA) innovation model

Alg ) y(8) = B(g Huls) + (g He(s) (11)

where we define
J(g7') = det(I, —¥pq™'), B(g') = Hadj(I,—q'¥,)Bq™ (12)
A(g ) = ¢(gH 1, — Hadi(I, —q'¥p)Kpqg™ (13)

4 Optimal and suboptimal fixed-interval white noise Wiener smothers
In [ 6], it is proved that the unified steady-state optimal {ixed-lag white noise innova-
tion smoothers are given as

N
0Ct | t4+N) = Li(g et +N), Li(g™) = DI My(idg™, O=w,y (14)
P =0

My(i) = Do(D(FDTH Q! M.(0) = 8SQ., M(0) =Q, Q! (15)
D,(1) =—SK"®¢" +QLr"—SJ", D,(1) =—Q,K'®’ (16)
Equation (14) yields the unified steady-state optimal fixed-interval white noise inno-
vation smoothers as )
0t | N> = L%, (g)e(N) (17)
From (11) we have e(N)=¢ ' (¢ ") [A(g7)y(N)—B(q ' Yu(N)]. Substituting it into
(17) yields the tollowing Theorems.
Theorem 1. For the system by (1) and (2) with Assumptions 1 and 2, the unifield as-
ymptotically stable optimal fixed-interval white noise Wiener smoothers are given as
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(g0 | N) = B, (g Du(N) + K% (g y(N) (18)
where @=w,v, ¢(qg ') only operates on time ¢ of 8(¢| N), and
B%. (g7 =— L% . (g"H)B(g™), V(g™ = Ly_ . (g DA™ (19)

Noting that ¥, is a stable matrix*', from (12) we have that ¢(¢g™') is a state polyno-
mial. Hence, Wiener smoothers (18) are asymptotically stable. Also note that the feature
of Wiener smoothers (18) is that the degrees of polynomial matrices L%_, (¢ ') B%..(q™ "),
and K%.,(q ') are time-varying, and L%_,(qg”") are polynomial matrices in g~' with the de-
oree of N—¢. Hence, when N is larger and ¢ is smaller, BY,,(¢"!) and K%.,(¢ ') are poly-
nomial matrices with higher degrees. This may create a larger computational burden. No-
ting (15), because ¥, is a stable matrix ">, we have that (¥} )"'—0, further M,(:)—0,
as i—>co, Therefore, if 7 is sufficiently large, for example, i>m,, then we have that M,;(7)
20, In order to reduce the computational burden, we truncate the terms of L%_, (g™ "),
that is, terms with coefficient matrices My (i) =0 are omitted and m, +1 terms are re-
mained. m, is called the truncated index. From Theorem 1 we obtain the following fast su-
boptimal fixed-interval white noise Wiener smoothers,

Theorem 2. Under the conditions of Theorem 1, the unified asymptotically stable fast
suboptimal fixed-interval white noise Wiener smoothers 8,(z| N) are given as

6(q)8,(t | N) = B2 (¢Ou(N) + K% (g y(N) (20)
where 8=w,v, and we define the truncated polynomial matrices L%_,(¢g~*) with truncated
index m, as

mlﬂ( ..M'—ft! 44 )

4
Ly(g™") = D) Mg ™™™ (21)
1=10
and the corresponding truncated polynomial matrices are detfined as
B.™(g') ==L (gHB(@), K.)°(g") =L (g")HAG™) (22)

Hu mﬂ

Since the number of terms of L ;"° (¢7") is not larger than m,+1, taking a smaller m,
produced that BY™ (¢7!) and K%™ (g™!) are polynomial matrices with lower degrees, so
that the smoothers (20) obviously reduce the computational burden. Compared to the op-
timal smoothers (18) and those in [ 3,4 ], the suboptimal Wiener smoothers (20) consti-
tute a fast smoothing algorithm.

S Truncated error analysis and selection of truncated index

The requirement of selecting the truncated index m, 1s that m, 1s a suiticiently small
posttive integer, so that the suboptimal smoothers (20) become a fast smoothing algo-
rithm, and m, must ensure the accuracy of suboptimal smoothers (20). The truncated in-
dex m, can be selected according to the locations of eigenvalues of ¥,. In the following
theorem, we reveal that the coefficient matrices M(i) of L4_,(¢g™!) exponentially decay to
zero, and the decaying rate is related to the spectral radius of ¥,.

Theorem 3. For the system by (1) and (2)with Assumptions 1 and 2, the coefficient
matrices My(1) given in(15)exponentially decay to zero, as i—>o0, 1. e.,

My(i) = O@A™H) (23)
where A4, ,+++,A, are the eigenvalues of ¥,, and A=max({A,[,*+,|4,|) is the spectral radi-
us of ¥,.

Proof. Let @,, - ,a, be linearly independent nX 1 eigenvectors corresponding to eigen-
values A, ,++*,A, of ¥, , i.e., ¥, a@,=A, &, i=1,2,,n. Setting P=[@a,,*+,a,], we have
the relation ¥, P = Pdiag(A,,***,A,), so that ¥, = Pdiag(A,,-**,A,) P™'. Hence (15) be-
comes

My(i) = Dy(1)Pdiag(Ay! -, AFHP'H'Q." (24)
which vyields
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T

| M) | < ed! (25)
in the sense of the spectral norm of matrix. Since ¥, is a stable matrix, we have 0<A<C1,
i. C.o (23) hOldS. D

Now, we analyse the accuracy of suboptimal smoothers (20). The smoothers (20) are

equivalent to fast suboptimal fixed-interval white noise innovation smoothers
6-”!

0,(t | N) = L7 (g De(N), 0= w.y (26)

When N—t>m, ., subtracting (26) tfrom (17) yields the suboptimal smoothing error
N—t

e(t | N) =0t | N)—0.(¢t | N) = > M;(1)e(t +1) (27)
irrmu—’r-l

Theorem 4. For the system by (1) and (2)with Assumptions 1 and 2, if || e(¢) || <8,
then the suboptimal smoothing error formula 1s

| es(z | N) || < pA™ (28)
with p=¢B/(1—A). In order to ensure the required accuracy of the suboptimal smoothers
| es(t | N) || <o (29)

where 0 1s the given accuracy index. the formula of selecting the truncated index m, 1s
m, = | In(d/p)/lnA ]4 1 (30)

Proof. From (25) and (27) we have

N—1

5 1 . /IN_I_?”G # C_BA my
(, A: 1 — Amﬂ
| esCe | ND | <::;HC B=cf 5 <13

with p=¢f/(1—A4). Hence (28) holds. From (28), a suttficient condistion to satisfy (29) 1s
that the following inequality holds

— pAm“ (31)

p;{m,‘_} < 3 (32)
Taking the logarithm of (32), and noting that 0<{A<(1, InA<C0, we obtain the inequality
m, > 1n(d/p) /InA. which yields (30). ]

6 Simulation example —— Bernoulli-Gaussian suboptimal white noise Wiener smoother
The estimation prolem of Bernoulli-Gaussian inpur white noise has the important ap-
plication background in oll seismic exploration -/, Consider the control system with corre-

lated noises
! 0 - ~(. 5~ m— 1"

x(t+1) = 0.6 __O'S-x(r)—k B du(t)—!— B _w(t) (33)
y(t) =11 1 ]x(2)+ v (34)
v(t) = 0. 3w () +&(t), wu(t) = sin(2nwt/N) (35)

where w(t) 1s Bernoulli-Gaussian white noise, w(z) =56{(t)g(t), where 6(t) 1s a Bernoulli
white noise taking values 1 and 0 with probabilities P(b6(¢t)=1)=0.3, P(b(t)=0)=0.7,
g(t) 1s a Gaussian white noise with
zero mean and variance ¢, =1, and 1s
independent of 6(¢), &£ (t) 1s a
(Gaussian white noise with zero

mean and variance oz =0, 05, and 1s
independent of w(r). Taking N =
200, m, =10, applying Theorem Z,

e (1) e (£ 1200)

the simulation result of the fast su-

boptimal fixed-interval white noise

Wiener smoother w (¢|200),tr=1, 3, =0 00 50 200
2.+++,200,is shown in Fig. 1, where 1/step

the points denote w, (£|200), and Fig.1 Bernoulli-Gaussian white noise and fast suboptimal
the lines denote w(z). We see that fixed-interval white noise Wiener smoother
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w, (¢|200) has a higher accuracy. Noting that ¥, has the eigenvalues A, = —0. 4069 and 4,

=0, 3516, ¥, has the smaller spectral radius A=0. 3516, Hence taking m, =10, w,(¢|200)
has the satistfactory accuracy.

7 Conclusion

Based on the Kalman filtering and CARMA innovation model, for the systems with
correlated noises, a fast unified {ixed-interval white noise Wiener smoothing algorithm has
been presented by a truncated method. The truncated error formula and the formula of se-
lecting the truncated index are given. The proposed fast smoothing algorithm can be ap-
plied to signal processing in oil seismic exploration ' and state estimation'®.
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