20K %2 H 31 &t % kK Vol. 29, No. 2
2003 4 3 A ACTA AUTOMATICA SINICA Mar. ,2003

R o

Sufficient Conditions for Input-to-State
Stability of Switched Systems!’

ZHAQO Jun NIE Hong

(School of Information Science and Engineering , Northeastern University, Shenyang 110004)
(E-mail: zdongbo@ pub. In, cninfo. net)

Abstract Input-to-state stability of switched systems is studied. Sufficient conditions for switched
systems to be input-to-state stable are given under the assumption that all subsystems are input-
to-state stable. A€ and A functions for switched systems are constructed by those for subsystems.
For a class of switched systems a lower bound on the dwell time of switching is explicitly calculat-
ed which guarantees input-to-state stability. All results are derived constructively.
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1 Introduction

The notion of input-to-state stability (ISS)!*) has proved to be very useful in control
systems analysis and design. In parallel with the Lyapunov stability theory, some charac-
terizations and properties of ISS were given in[ 2~5]. The input-to-state control Lyapunov
function (ISS-CLF) was introduced in { 2] and the existence of an ISS-CLF was shown to
be a necessary and sufficient condition for the existence of an ISS stabilizing state feedback
law. There have been various generalizations of 1SSt 67!,

On the other hand, there has been considerable interest in studying switched systems
in recent years (for example, refer to | 8 | and the references therein). This is mainly be-
cause switched systems constitute a special class of hybrid dynamical systems, which have
broad applications and take specific and simpler forms. The issue of stability of switched
systems is considered to be of great importance and therefore has been studied extensively.
The existence of a common Lyapunov function i1s necessary and suffictent {for stability un-
der arbitrary switching laws'®!, There have been a number of results adopting a common
Lyapunov function., However, the class of switched systems that can be stabilized by arbi-
trary switching laws is, in general, very limited. Therefore, it has received a lot of atten-
tion to identify a restricted class of switching laws under which switched systems are sta-
ble'™. Single Lyapunov function technique and multiple Lyapunov function technique pro-
posed by Branicky'® proved to be major tools in this aspect.

Compared with the vast existing results on stability of switched systems, very little
attention has been paid to the study on ISS of switched systems. In [4] the ISS of integra-
tion form and the disturbance attenuation problem were studied. Robust switching con-
trollers were constructed via ISS-Lyapunov functions "%, Converse Lyapunov theorems were
given for ISS switched systems-'!.

A switched system may not be stable even though each individual subsystem is stable.
Similarly, a switched system may fail to be ISS even if all of its subsystems are ISS,
Therefore, looking for conditions under which a switched system is ISS is a significant
problem. This paper focuses on this problem. Under the assumption that all subsystems
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are [SS we derive sufficient conditions for switched systems to be ISS, The results are giv-
en constructively in the sense that the A% and X functions, which are required for ISS of
switched systems, are constructed systematically according to the corresponding functions
of each active subsystem. Moreover, for a class of switched systems a lower bound on the
dwell time is explicitly calculated which guarantees ISS under arbitrary switching with
dwell time no less than the lower bound.

2 Preliminaries and problem statement
Denote the usual Euclidean norm by | * {, and the supremum norm of a locally essen-
tially measurable bounded function u: R=,— R™ by || u || =ess sup{|u(z)!}. All such

120
functions with the finite supremum norm make a linear normed space, denoted by Z%.

Consider the system
X = f(x,u) (1)
where x€& R" 1s the state, u & £% is the input, and f satisfies f(0,0)=0. By x(z,x,,u) we
denote the trajectory of system (1) starting from the initial state x(0) =Xx; and under the
control u.

Definition 1''°, System (1) is input-to-state stable (ISS) if there exist a X¥ function 3
and a X function Y, such that, for each input ue& 2%, x, € R"and t=0, the following ine-
quality holds.

| xCtyxo u) | << BCHx |+ 7(flul) (2)

Lemma 1%, System (1) i1s ISS if and only if there exist a X% function  and a ) {func-

tion ¥, such that for each input u& ¥, x, € R*and t==0, the following inequality holds.

L x(tyx0,u) | < max{B(|xq |, )+ Y(lul)} (3)
Throughout this paper we study switched systems of the tollowing form
.f:fi(_xgu)g izla"'gk (4)

where x& R" is the state and u € 42 i1s the input. By the jth subsystem we mean the system
x=f (x,u). Let
0 == to <7ty < ==0 <1, < = (5)
be a switching sequence, and suppose the i;th subsystem is active on the time interval
(¢,¢,.1). For the sake of simplicity of notations, x (¢, x;,u) denotes the trajectory of
switched system (4) starting from the initial state x(0) =x, under the control u and the
switching sequence (5), and x’ (¢,x, ,u) stands for the trajectory of the jth subsystem ot
switched system (4) starting from the initial state x(0) =x, under the control u.
Switched system (4) is said to be ISS if its trajectory satisfies (2), It 1s easy to see
that Lemma 1 remains true for switched system (4),.
Our goal is to find conditions under which switched system (4) 1s ISS under switching
sequence (5).
Before developing the main results, several mild assumptions are required.
Assumption 1. All subsystems of switched system (4) are ISS, that is, there exist X<
functions f; and A functions ¥;, j=1,2, **-, &, such that for each u&€ £, x, € R" and t =0
the following inequality holds.
lxi(taxmu)]émax{ﬁ;(\xaiatﬁ)ﬂj(ﬂu“)} (6)
Assumption 2. There exists a constant 0>>0, such that for any T>>0 there 1s an inte-
ger s satisfying ¢+, >T, and ¢,,, —t,=0.
Remark 1. Assumption 2 simply means that there exists a positive lower bound on the
dwell time of some subsequence of switching, This assumption is necessary because other-
wise we would have lim¢, ;| —¢,=0, which is unacceptable in practice.

JEee . _
Assumption 3. For any fixed vy, 8,(y,0)—8 (y,0) >0, j=1,2,+,k, where 0 is as in
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Assumption 2.

Remark 2. Since 3;(y, t)—0 as t—>oc, this assumption is very general and mild. In
fact, if B;(y,t) =% (y)e %', as frequently used in the literature, this assumption is auto-
matically satisfied.

3 ISS conditions
If Assumptions 1~3 hold, one can easily see that x(z,x,,8) =X'» (t—1, s X st » 1, <
t<t,i1s m=0,1,2,+, where x, =x"1 (£, —tn_13sXm-14). Now, we make an estimate
on x(t,x,,u).
When ¢, <t<<t;, (6) gives
[ x(2yx0,u) | = | X (tyx0u) [ <<max{B, ({x,|,0), ¥ ({lull)}=
max{B° (|x,|2), ¥ (Jul,2)}

(7)
where 8° (y,t) =P, (y,t),7 (y,t)=7, (y). Thus,
[x | = | x% (21 %0 ,u) | < max{B°(|xo|+2:),7 (Jul»2,)) (8)
Since 8 i1s strictly increasing with respect to its first variable, when ¢, <<t<{¢;, we have

lx(t!x(} U ) [ — ‘xil (t'—tlax1 -!u) lé max{ﬁil ( lxl | ,t—tl),’}/,-l ("u” ) }g
max {8, (max{B°(|xo!|+20),7 (ul s2:) )52 — ) s 7 (full)}=
max{B;, (B° (| % |,01),t~2),max{B, (¥ (ul 1)+t —2.),7; (Jul)}}=

max{B' (|xe]+2),7 (Jul,2)} (9)
where 8 ' (y,t) =8 (B’ (yst1)st—1t1), 7V (y,t) = max {f (Y (y t1)st—1:1),7: (¥)}.
Continuing the same procedure we obtain

BD (y,t)—*—— B:'ﬂ (y!t)a ﬂ’(y,t)= ‘8;'5 (483_1 (y;ts),t—-ts), s = 1,2 o~ (10)

Y (yst)=7, (3)s Y (yst)=max{f (Y (yst.)s t—1), V: (3D} s = 1,2+ (1)

| x(2sxosu) | << max{B?(|x,| )7 (Jullst)}s t, <<t <tpsp=0,1,- (12)

We are going to construct 8 and ¥ for switched system (4) via 8’ and 7. To this end, we
introduce 6, (y) which satisfies

Bi(y,0)=9y4+0d;(y), j=1,2, (13)
Evaluating (6) at £=0 and «=0 gives rise to | x, | <<B;(|x,],0), ¥ x,, which means that
0, (y) 1s nonnegative.
Theorem 1. Suppose the following three conditions are satisfied.
Condition (a). For any fixed y the series 220; (87" (y,t;)) is convergent,
j=1 "7
Condition (b). As a function of y the series 2.8; (877! (y,¢;)) is increasing for each p=
=7
1,2, !
Condition (¢). For any fixed y the sequence
Bqu (Bqu_l (e (181'”&1 (ﬁ:‘m (Volmrr —tm ) stz — Lmnt1 ) 9°** ) sbmiq — Emtg1 ) +0) (14)
iS boundEd With rESPECt to q— 09 15 2 s ' TN — 0; ]. ’ 29 ety Where (14) iS ConSidered as

B (y,0) when ¢g=0. Then, switched system (4) is ISS under the switching sequence (5)
with B and ¥ functions defined by the following

B(yst)= B (yst)+ D)8, (B (yst;))s t, <t <tgus 5= 0,1, (15)

j=st1 |
7(3’) — Sup{y}(ygtj)g j= 1,2!”'} (16)
In order to prove this theorem we need some lemmas. The proof is simple and thus o-
mitted.

Lemma 2. If for any fixed =, A(x, y) is a continuous function of y, and for any fixed

y, h(x,y) 1s a monotone continuous function of x, then, h(x,y) 1s continuous as a func-
tion ot the whole variables (x, y).



No.2 ZHAO Jun et al. ; Sufficient Conditions for Input-to-State Stability of Switched Systems 255

Lemma 3. Suppose A{(x,y) 1s a continuous function defined on a<Cx<{h, 0 y<{o0,
and for any fixed x, h(x,y) is decreasing with respect to y. Moreover, h(x,0) —h(zx,A)
>0 for some A>0 and x€ {a b ]. Then, there exists a constant #>>0 such that for each
x€E[lab] and y=A, h(z,0)—h(x,y)>=u holds.

Lemma 4. Suppose the series 2. a, (x) is convergent for all z€[{0 o0) and a, (x) =0

n=1

1s a continuous function of x. If 5, (x)4 2 a,(x) is increasing with respect to x for m=

n=—m

1,2,¢+, then s,,(x) 1s a continuous function of .

Now, we turn to the proof of theorem 1. What we need 1s to show that 8 and 7 de-
fined by (15) and (16) are right functions for switched system (4) to be ISS under the
switching sequence (5). To do this we only have to verify that 8is a A% function and ¥ is
a A function and for each 7 (3) holds.

First of all, we prove (3). It is evident that when ¢,<Cz<Tr,,,, it holds that

Y (yst)=max{f (VY (yst;)s t—1t )5 7 (¥) <
max{f, (V" (¥:2.),0),% ()} =7 (¥t ) Y (y) (17)
By (15) we know B(y,t)=8°(y,t). Therefore (3) follows immediately from (12).

Secondly, we prove that B(y,¢t) is a #¥ function. It i1s not difficult to know from Con-
dition (b) of Theorem 1, Lemma 2, Lemma 4 and a direct calculation that 8(y,¢) is con-
tinuous with respect to (y,t), strictly increasing with respect to y and decreasing with re-
spect to t. Moreover, 3(0,z) =0 holds for all t&. Now, we claim that lim3(y,¢) =0 holds

= oo

for any y, and thus B(y,¢t) 1s a A¥ function. If this is not true, there must exist some ¥y
satisfying imB3(y,z) =c>0. Choose T >0 such that for t =T , ¢<<B8(y,t)<1. 5¢, Choose

"

an integer K such that for all s=K,

0<< D38, (B (yy2;))<C 0. 5¢ (18)

For T chosen above, there exits s, satisfying ¢t,_; =T for all s==s5,. Therefore, when s=s,

it holds that
c <Py = B (yst)+ D 0 (B (yit)) < LBy 1, <t <ty (19)

j=s+]

Let s *x =max{K, s,). lf s==s5", or equivalently, t=¢,- , (18) and (19) must hold. There-
fores

0.5¢c < ¢c— Z&j (B (yst,) ) B (yat)<C 1. 5¢ (20)

j=s+1
Assumption 2 guarantees that a sequence s, >>s' and an integer p exist with the property

i, =p, r=1,2,-+, and¢, —t, =20>0. It follows from Assumption 3 and LLemma 3 that a
constant >0 exists such that for V2& [0.5¢ 1. 5¢]]

Bp(zﬁo)_‘ﬁp(z’fsm — )= B, (2,0)— B, (2,0) = p (21)
(20) indicates §° 1 (y,¢t, )€ (0.5¢ 1.5c|. Taking (15), (10) and (13) into account, we

have
r+-m r-+m

Blyst, )= Byt =, (Byst, )= Blysta) )+ D3 (Blyst, )= Blyst, )=

g=r g=r

r~-m

D Byt )= Byt )=

g=r
r+m

E (ﬁs‘? (yatsq )‘——'ﬁsq—}—l (y!tsﬁ_l )+ 6:‘JF

g=r

r-—m

DB, (B (yst, )0)—§

g=r

Byt )=

q_}.,_

Byt )00

2
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ﬂ:’s (B (y,tsﬂl);O)-—Bsq (yatsw))=

¢+1
r~+m

DIB, (B (352, ):00— B (B'e1 (yst, sty — 2, )) =

g=r

(m+1)u (22)
By letting m—oo we have 8(y,t, ) —c=o0, This is a contradiction.
Finally, we show that ¥(y) is a X function. While this can be easily seen from the fol-
lowing expression and Condition (c¢) ot Theorem 1.

14 (yit)zmax{yis (v} ﬁii (ﬁiH (e (ﬁ;‘f_ﬁl (ij_p ('Yf?_p_l (3’) sly pt1 — ts——p)!

Lo pt2 “ts—p-}—l)!"'!)it.s _zs—l)’t_ts)! P = 051!"'!5‘_ 1} (23)

Corollary 1. If 8. (y,2) has the form B, (y,t) =M,y%,(t), where M; =1, $,(¢) is decrea-

sing to zero as t—>co and #,(0) =1, then there exists 6>>0, such that switched system (4)
is ISS under any switching sequence (5) satisfying ¢,,., —¢;, =20, j=0,1,

4 A lower bound on dwell time

In this section, we derive a lower bound on dwell time of switching sequence for 8 of
the mostly used form: B(y,t) =Mye ®, so that switched system (4) is ISS for arbitrary
switching with dwell time no less than the lower bound. In this section we do not need As-
sumptions 2 and 3.

Theorem 2, Suppose each subsystem of (4) is ISS and B, (y,¢) =M, ye™ ", where M, >0,
a; >0. Denote 0, = 1.'11;_-1::{{:::r’*1 lgM;. , }. Let 0 be any constant satistying d>0,. Then

switched system (4) is ISS under arbltrary switching sequence (5) satisfying ¢,,, —¢, =0,
] =1,2,°",
Proof. From (6) M, =1 must hold. Since d;(y)=8;(y,0) —y=(M;—1)y, a straight-
forward calculation gives
Bs (y,zﬂ_l ) — MiﬂMil ...Ml_sye-— (Eiﬂ :1+a1.1 Cy—ty )+--.+al.s Ct (=t DD (24)
Therefore,
5 (B (y,t))< M; M; M, yeﬁ"(“u“ﬂ ‘% _HH'"MG—l T2 0 A a () (25)

Noticing that the definition of 0. 1mplles M., <e i"* ,we have

;*1((;;) — M €%, 4> L Mr:,-ﬂ 3_“‘}3 Le ™ 02 L2 L1 (26)

where a=min{a, ,*>*,a,}. (26) indicates that the series Ea (y) 1s convergent for Y y,

which in turn implies that Condition (a) of Theorem 1 must hold Since 0; (y) =(M; — 1) y,

Condition (b) of Theorem 1 follows. It is easy to deduce the following explicit expression

for (14).
Qoo (y) — M qu+q—1 ...Mimye—(ﬂ,-m (fﬁlhtm)+ﬂl+m+l Ctp o=t 1 X+ te
where a,..0 (y) = (y,O) =M, y. Therefore,
Qg (VK A (¥)= M, M, ye™, ‘=72 M, M, v, qg=1,2, (28)
Thus, a,,,<<y(max{M;,-+,Mg})%, which guarantees that Condition (¢) of Theorem 1 is
satisfied.

i1 e w122 (27)

S Conclusions

We have addressed the problem of achieving ISS of switched systems under the as-
sumption that all subsystems are ISS. Sufficient conditions have been derived by use of ISS
properties of each active subsystem, We avoided employing ISS Lyapunov functions of
subsystems. This was based on the following consideration. First of all, it is often very
difficult to find an 1SS Lyapunov function for a given system even if we are sure that the
system 1s indeed ISS. Secondly, we were interested in deriving constructive results. If ISS
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Lyapunov functions of subsystems were involved in the construction of ISS conditions for

switched systems, the results would fail to be constructive if an ISS Lyapunov function of
some active subsystem 1s unavailable.

A lower bound on the dwell time was given to guarantee ISS property, which provides

a big treedom for the design of switching signal.
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