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Abstract The uniqueness and existence of the solution are discussed for a special forward-back-
ward stochastic differential equation and the linear quadratic stochastic optimal control problem.
The explicit accurate formulas to the unique optimal control and the linear feedback are respective-
ly obtained by the Riccati equation.
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1 Introduction

Let (2,%,P) be a probability space, and (B,),», be a 1-dimensional Brownian motion
in this space. (%,)1s the natural filtration generated with the Brownian motion. We consid-
er the following stochastic optimal control problems:

{dxt = [ Ax, + Bv, |dt + [ Cx, + Dv, |dB, (1)
X, = a

where A and C are both »X»n matrixes, B and D are both nX% matrixes; v,, t€[0,T] is
the admissible control process valued in UCR"* and % -adapted square-integrable. a &€ R",
The cost function is

T
J(v()) = —%—E J((Rx,,x,,) <Nv”v,>)dt—|—<QxT,xT>:| (2)

where R,Q are nX7n nonnegative symmetric bounded matrixes, N 1s a £ Xk positive sym-
metric bounded matrix and the inverse is N7 1.
In control theory'!'*!, the existence and uniqueness of the optimal control was proved.
In { 3], the existence and uniqueness of optimal control were also proved by applying the
maximum principle. In | 4], the optimal control is obtained as
u(t) =— N'(B'y,+D"z,)
where (y,,z,) is the solution of the following backward stochastic differential equation.
—dy, = (A'y, + C'z, + Rx,)dt — z,dB,
(3)
yr = Q(x1)
In this paper, we will consider more general problems. Let
dx, = [A(w)x, + B(w)v, — L™ (w)y, ]dt + [C(w) x, + D(w)v, ]dB,
<—dy, = [AT(w)y, + C" (w)z, + R(w)x, |dt — z,dB, (4)
Ko = Ay Yr = Qw) Xt
and the cost function be

T
J(v(e)) = ; EU(<R(w)x”xr) + ANCw)v,sv,) + (L()y,s¥.7)dt + ( QL) x7,%77 | (5)
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where R(w), Q(w), L{w) are all nonnegative bounded n X n matrixes, N(w) is a positive
bounded £ X% matrix and the inverse is N 7',

Note that (4) i1s a fully coupled forward backward stochastic differential equation
(FBSDE tor short). We will prove that there exists a unique optimal control and will give
the explicit linear feedback form

u(t) = — N7'[B' (wy, + D" (w)z,]
and the relative Riccati differential equation. In Section 2, we firstly give an existence and
uniqueness theorem for a special forward backward differential equation. In Section 3, we
prove the existence and uniqueness of the optimal control and give the explicit form of line-
ar feedback while the related Riccati equation i1s obtained.

2 A special FBSDE

To our knowledge, there are two main methods to study the existence and uniqueness
of solution of FBSDE, [5] gave the “four-step scheme”by using partial differential equa-
tion methods with the condition that the coefficients could not be random. {6 ] used proba-
bilistic method under some monotone assumptions when x,y take same dimensions. | 3]
extended it to different dimensional FBSDE and weakened the monotone assumptions,

We consider the special FBSDE .

(dx, = b(¢t,x,,y,)dt +o6(t,x., ¥, )dB,

<—dy, = f(t.x;s y,,2.)dt — z,dB, (6)
Xy = a, yr = $(x1)

where (x,y,2) €ER"™" ", for fixed (x,y,2), b, f,6 are (%,) progressively measurable. Let

X — f
u= |yt. Alt,u) = | b
(%) . O
Let the assumptions be:
H1)
1) A(t,u) 1s umiformly Lipschitz with respect to u
) 11) for each u, A(t.u) € M?*(0,T)
i11) @(x) 1s uniformly Lipschitz with respect to x
| iv) for each x,d(x) € L*(Q2,%,P)
and

(AG ) —AG W, u—u) <— B |x—X|"—B|y—7|°
H2) UP(x) —D(X), x— %) =4y | x—%|7
VYu= (x,y,2), u= (¥,y,2)
where 3, 3, are nonnegative constants,3 + 83 >0, u; +8,>>0. Then we have the following
theorems.

Theorem 1. Under H1) and H2) there exists a unique u, = (x,,y,,2,) that solves the
FBSDE (6).

For the uniqueness proof, refer to [ 3.
To prove the existence of the solutions, we consider the family ot FBSDEs with o €

L0,1]:

dX:e =[(1—)B(—Y") +ab(t,Xs,Y) + ¢, 1dt + Lao (£, X7,Y?) + ¢, ]dB,
<—dY: = [ (1 — B X +af (¢,Us) + y,]dt — Z:dB, (7)
x5 =a, Yy = o®(X%) + (1 —a)

where ¢,¢,7 are the processes in M’ (0, T). When a=1, (7) becomes (6); when a=0, the ex-
istence and uniqueness of solution for FBSDE can be obtained from LLemma 2.5 in | 3]. The fol-
lowing lemma gives a prior estimate for the “existence interval” of (7) with respect to o & | 0,1 ].

Lemma 1. Under H1) and H2) there exists a positive constant 8, €[ 0,1 ] such that if (7)
has a solution (x¥% , y», 2% ), then for each §& [ 0,68, ] (7) also has the solution (x% ™%, y% ™2,
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zaﬂ—l—a).

Proof. For ¢,0,yEM*(0,T), £€L*(Q,%,P) and o €[0,1], (7) has a unique solu-
tion,therefore, for each x; € L*(2,%,P) and u,=(x,,y.,2,) EM (0, T; R"™""™") ,(7)has
the unique triple solution U,=(X,,Y,,Z,) €E M* (0, T;R*"™").

Consider the kind of FBSDEs with parameter 6€[0,1]:

dX, = [(1—a)B(—Y) +ah(t, X,,Y) + 6By +b(t,x,,y)) + ¢ ]dt +
[a0o (£, X,,Y,) +8a(t,x,,y.) + ¢ 1dB,

—dY, = [Q—a)B X, +ao f,U) +6(— Bix, + fsu)) + 7. Jdt — Z,dB,

Xo =@, Y1r = ao®(X7) + (1 —a) X+ +0(P(x1) —x7) + &

We need only to prove the mapping

Iﬂu+3(u X xT) = U X XT:
M:(CO, TR ) X L*(2,%,P;R") — M*(0,T;R*™™) X L*(Q,%r,P;R")

1S a contraction,

Let

ey S—

u= (¥3y,2) € M0, T;R™") UXXr=1,.:(uX%x7),

b= (%,9,2) =(x—%,y—7J,z2—2),U=(X,Y,.2) = X—-X,Y-Y,Z—2).
By using 1t0 formula, we have

T

(tops + (1 —a)VE| X1 | +,81EJI5L

0

T
zds—l—ﬁgEJ.'i “ds <
3

T

3K1EJ( i, |7+ |Us|?)ds + 0K, E| X |? + 6K, E| &1 °

0
We can have the following estimates:
T T
~ r

sup E| X112 <6K E| | &,

Ososx T

i,

2d5+K1E ‘Y,;

0 G

2(159

T

T
El| Xs|%ds gKITaEJ
0

O

2d53

i,

T
2d5+K1TEf|i‘:

T

T T
Ej<|ifs|2+ | 7. 19)ds <K, 6| | &, | 2ds Klé‘EJlf’slzds
0 Y 0

0

T
K13EJ|X5‘2d5+K1E|XTIZ

O

where constant K; depends on §,,8:,7T and the Lipschitz constant, If 4 >>0,then

Qo p1 + (1 —ap) ;}t — min(lam) > 0
Combining the above estimates, there exists a constant K depending on 81513, K, T,
such that

T T
EflUsi"’derEIXT]gKS(E i, |2ds +E| &5 |?) -

It 1s clear that, by taking §, = 21K ,for 8€[0,68, |,the mapping I, +s1s a contraction. The u-

nique fixed point U% ¢ = (X%1?,Y% "%, Z%*%) of this mapping is the solution of (7).

At last, we give the proot of Theorem 1.

From Lemma 2.5 in [ 3], if =0, (7) has a unique solution. According to Lemma 1,
for each §€10,8, ], when a=0-+¢, (7) has a unique solution. Since &, only depends on
constant K, we can repeat this process for N(1<XNg§, <1+, )-times. Specially, it a=1,
¢.=0,7,=0, then (7) has a unique solution. The proof is completed. ]
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3 Linear quadratic stochastic optimal control problem

Consider the following linear stochastic control system coupled with a BSDE.
(dx, = [A(w)x, + Blwu, — L' (w)y, |dt + [ C(w)x. + D(w)u, JdB,
<—dy, = [AT () y, + C'(w)z, + R(w)x, |dz — z,dB, (&)
Xo = Ay YT = Qlw)xy
where A(w) and C(w) are both bounded nX»n matrixes, B(w) and D(w) are both bounded
nX k matrixes; v,»t€ [0, T ] is an admissible control, i. e. , a square integrable process
taking values in R*, that is, the control is not restricted.

To minimize the cost function:

T
éE (CRCa)X0rX) 4 (NCw) s v) + (L) 30290 de + (QCa) X7 2 X7)

0

ey

J(y(e)) =

(9)
where R(w) »Q(w) ,L(w) are all nonnegative symmetric bounded nXn matrixes, N(w) 1s a
positive symmetric bounded £ X% matrix and the inverse N 7',
Theorem 2., There exists a unique optimal control;
u(t) =— N7'[B" () y, + D" (w)z, ]
Proof. It is easy to check that (8) satisfies assumptions H1) and H2) in Theorem 1.
So, (8) has the unique solution (x,,y,,2,). We need only to prove that u#(z) 1s the optimal
control.
For any v, € R*, we denote x} as the trajectory. Then we have
T
Jv(Ce))—J(ue)) :%E

(L) y} oy — (L) y,»y.2)dt + (QCw) x7 s X717 — (Qw) X7 3 X77

J(<R(w>xf,x:>—<R<w>x” XNV, vy — (N(@) v, > +

0

Hence,
T

;Erjumwxxf X — x) + Ny, —u, v, — ) +
0

(LCap)y? — ¥,9o¥ — y.) T 2(L(a)y, sy — ¥, + 2{RCw)x, yx, — x;) +
2(N(u,,v, —u,))dt + (Qaw) Xt — X7:X% — x7) + 2{(QCw) X1y X7 — X1

Since y;r=Q{w)xr,by applying the Ito formula to (x]-—x,, y,7, we have
T

Jw(e)) —J(u(e)) =

ol

EI:(II% — XT gyT>:l :E (__ <R(Cﬂ)xr !x? — x;>+<BT(Cﬁ)y: !v{_“uf> T <L(Cﬂ)y; !y? T yf>) +

aall ¥

(}
(D" (a)z,,v, —u,>)dt

As R,Q,L,N are nonnegative, we also have
T

Jw()) — Ju()) ZE| {({R{w)x,sx; — x,) +{N(w)u,sv, —u,) +

0

(L) y, sy, — v, 2))dt +{yr X7 — X717 | =

T

Efu(BT(w)y,_. DL 2) v — ) 4 (N(u, sy, —uw,))de = 0

0
So, u(t)=—N"'[ B (w)y,+D" (w)z, | is the optimal control.
To prove the uniqueness of the optimal control, the method is classical and can be

seen in Pontryagin et al. (1962) and Bensoussan(1981). Let u' ( = )74’ ( + ) be both opti-
mal control, (x!,y!),(x?,y?) be the trajectories corresponding to the optimal control, It
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(e )+ut(e) W (Ce)—u(e)
2 ’ 2

is easy to know that the trajectories corresponding to are

x;+x y.ty X, =X, Y.~V
(B2 BR) (B
JW()) =JW(s)) =a=0
2a = J(u' (w)) + J (4 (w)) =

T
Zj(ul(w)—gw(w))} E_j'((Rxl——x‘f xi-—x,..)_{_(Nu_r__—uf,ul—u:)_'_

) respectively. Since N is positive, we have

b
2 2
2 ] 2 Ll 2 -

12 Wl _ _
(Ly: Y. !yr J’:))dt_'_< QxT IT,xT XT } ;

2 Z 2 2 i
T
u' (o) +u’ () | j u, —u;, u, —u,
2]( > )i Eﬂ(N ? ’ 2 )dt}f
H
2a+-%E lu} —ul|%de
‘JU
S0,
T

Ef[u} —u? |2dt << 0
0
Hence, u; =u’. The proof is completed. ]

Now we assume A,B,C,D,R,L,Q,N are all deterministic. Introducing the matrixes
K(t),M(z)and the following generalized matrix Riccati equation:
— K@) = ATKG) + K)A— K@[LT +BN'BT]K(¢) —

KBN7'D'M(t) +C'M(t) +R

M() = K(t)C—K@DN''B'K(t) —K)DN'D"M(t)
K(T) =Q,t e [0,T]
we have the following theorem.

Theorem 3. Suppose there exist matrices (K (z) ,M(z)) satisfying the generalized ma-
trix Riccati equation (10). Then the optimal linear feedback regulator for the linear quad-
ratic optimal problem is

u(t) =— N'[(B'K)+D"M()]x,, te€[0,T]

the optimal value function 1s

(10)

J () = -
Proof, It is easy to check that if (K(¢),M(2)) is the solution of Riccati equation (10)
then the solution (x,,y,,z,) of FBSDE(8) satisfies
y, = K(t)x,, z, = M(t)x,

(K(Q)a,a> (1D

So the optimal control is
u(t) =— N'[(B"K&) +D'M) ]x,, t € [0,T]
The value of equation (11) can be calculated by using Itd formula. The proof is completed.
We discuss a special case: L(w)=0.

Equation
{dx, = [Alw)x, + B(w)v, Jdt + [ C{w)x, + D(w)v, |dB, (12)
Xo — Q4
the cost function is
T
J(w(+)) = éEU((R(w)x”xJ 4 (NCw)v, s v.))de 4 (QC@) X7 x7) (13)

{
From Theorem 2, 1t is easy to obtain the following corollary. (]

Corollary 1. For the optimal control problems (12) and(13), there exists a unique op-
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timal control

u(t) =— N'[B" (w)y, + D" (w)z,] (14)
For the solvability of generalized matrix Riccati equation (10), we only discuss a spe-
ctal case. D=20.

In this case, (10) becomes

(— K@) =A"TKW) +KWA—-KW[L"+BN'B"]JK(t) + C"K()C+R

<M(@) = K@) C (15)

K(T) = Q, t € [0, T]

From the theory of Riccati equation, (15) has a unique solution K(¢) € C(0,T;5%). Here
" is the set of nonnegative symmetric matrixes.
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