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White Noise Estimation Theory Based on Kalman Filtering!’
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Abstract By using the Kalman filtering method, a unified and general white noise estimation the-
ory is presented for the first time, It can handle the filtering, smoothing and prediction problems
in a unified framework for both the input white noise and measurement white noise 1n linear dis-
crete time-varying and time-invariant stochastic systems. The optimal and steady-state white noise
estimators are presented, and white noise innovation filters and Wiener filters are also presented.
They can be applied to seismic data processing 1n oil exploration, and provide a new tool to solve
the state and signal estimation problems. Two simulation examples show their effectiveness.

Key words Input white noise estimators, measurement white noise esttmators, deconvolution,
reflection seismology, Kalman filtering method

1 Introduction

The input white noise estimation problem for stochastic systems is also called decon-
volution., It occurs in many fields including reflection seismology, communications, and
signal processing. The optimal input white noise estimators with application to oil seismic
exploration have been presented based on the Kalman filter by Mendel''™*!, but they do
not constitute a unified white noise estimation theory because the measurement white noise
estimation problem was not solved. A unitied white noise estimation theory has been pres-
ented based on the modern time series analysis method by Deng et al. **!, which not only
includes the itnput white noise estimators but also includes the measurement white noise es-
timators. It has been used to solve the state and signal estimation problems®~ ., But its
[imitation ts that it does not solve the optimal white no:se estimation problems for time-va-
rying systems and only the steady-state white noise estimators are presented for time-in-
variant systems.

In order to overcome the above drawback and limitation, a new unitfied and general
white noise estimation theory is presented based on the Kalman {ilter and projection theory
in this paper. It can handle the input and measurement white noise filtering, smoothing
and prediction problems in a unified framework for time-varying and time-invariant sys-
tems. The optimal and steady-state white noise estimators are presented, and the white
noise innovation filters and Wiener filters are presented. They provide a new tool for sol-
ving the state and signal estimation problems.

Consider the linear discrete time-varying stochastic system

x(t+1) = d)x() +T'()wle) (1)

y(t) = H()x(t) 4+ v(e) (2)

where ¢ 1s the discrete time, the state x(¢) € R", the measurement y(¢) € R™, ®(¢), I'(¢)
and H(t) are known time-varying matrices.

Assumption 1. w(z) € R and v(¢) € R™ are independent white noises with zero mean
and variance matrices Q(¢) and R(z), respectively.
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Assumption 2, The initial state x(0) with mean g, and variance matrix P, is uncorre-
lated with w(z) and v(2).

Assumption 3. The initial measurement time ¢, =1,

Optimal white noise estimation problems are to find the optimal (linear minimum vari-
ance) estimators ¥(¢|t+N) and w(¢|t+ N) of v(¢) and w(z) based on measurements (y(:+N),

-+, y(1)). They respectively minimize the mean-square errors
Jo=E[(8() — 0t | t+ N0 —8(t|t+N»], 6 =v,w (3)
where E denotes the mathematical expectation, T denotes the transpose. For N=0, N>0
or N<{0, they are called white noise filters, smoothers or predictors, respectively.
This paper is based on the following Kalman filter''*

x(t+11t+1D) =xC+1|+KG&+ De(t+ 1) (4)

x(t+1|1t) =d)x(t | 1) (5)

et+1) =yG+1)—HG+DxG+1]| ) (6)
KG+1)=Pu+1|0ODH G+ D[HG+DPG+1 | )H G+ 1) +RG+1) ] (7)
Pa+1|t) = )P | P () + () QOIT (¢) (8)
PG+1|t+1)=[I,—KG+DHG+D]PG+1 |8 (9)

where I, is the n X n unit matrix, Xx(0|0)=pu,, P(0[0)=P,. Substituting (9) into (8)

yields the Riccati equation
Pi+1|DD=dW[PG|t—1D—PG|t—1DH"(OH@WPG | t—1DDH"(t) +R(®))'X

H(@PG | t— 1)@ () + D()QHI™ (¢) (10)
Notice that the innovation g(¢) 1s white noise with zero mean and variance matrix
Q) =H@WPG|t—1DH"(t) + R (11)

2 Optimal white noise estimators
2.1 Optimal measurement white noise estimators

Theorem 1. For the time-varying system (1),(2) with Assumptions 1~3, the optimal
measurement white noise estimators are given by

p(]t4+N)=0 (N<O0) (12)
y(t | ) = RMOQ ! (De(t) (13)
v t+N) =3 t+N—1D+M,(¢t| t+ N)e(t+ N) (14)
where N=1,2,+, and the smoothing gains are given as

M, |t+1) =—RMOK"WT(OH ¢+ DQ (¢ + 1) (15)

N—1

M,(t]|t+N)=—ROK WO W { [][I. — K@+ DHG+ ] O (¢ + i) } X

=1

H ¢+ N)Q '+ N> (16)

The error variance matrices P, (¢|t+N)=E[ (v() —v(t|t+N))(v(t) —9(t|t+N))T] are
given as

P,(t | t+ N) = R(¢t) (N < 0) (17)

P,(t|t) =R()—RWQ'(t)R() (18)

PG|t+N)=P,|t+N—1)—M G |t+N)QG+NM!I(:|:t+N) Q19

Proof. Applying the projection theory''?), #(¢|t+ N) is the projection of v(z) on the
linear space L(y(¢+N),:+,y(1)) generated by measurements (y(¢+N),++,y(1)), When
N<C0, Assumptions 1~3 and iteration for (1) and (2) yield that v(z) is uncorrelated (or-
thogonal) with L(y(¢+N),++,y(1)), so that formula (12) holds. Applying the projec-
tion formula''?! yields

vyl D=3 t—1D+Ev(D)e"(D)]IQ 1 ()er) (20)
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Equation (2) and y(¢|t—1)=H)x(t|t—1) yield
e(t) = HWx | t— 1)+ v (21)
where X (¢|t—1)=x() —x(t|t—1). It is obvious that € (¢|t—1)E L{(v(t—1),,v(1),
w(t—1),, w(0),x(0)). Hence v(¢) is uncorrelated with x (¢{t—1). Applying (21)
yields
Elvit)e" ()] = R(1t) (22)
Noting that ¥(¢{t—1) =0, and substituting (11) and (22) into (20), we obtain formula
(13).
Generally, applying the projection formula yields Equation (14), where

M,Glt4+ N)=E[vi)e"t+ N)YIQ ' (t + N) (23)
From (1), (5) and (21) we have
e(t+1)=HG+D[dw)xG | t) +TOw) ]+ v+ 1) (24)

with ¥ (¢|t)=x() —x(¢|t). From (1), (4) and (5) we have the recursive relation
o=, —-KWOHW][eG—DxG—1]t—1)+TIG—Dwt—1)]— K(v(s)
(25)
Noting that v(¢) 1s uncorrelated with ¥ (t—1{t—1), from (24) and (25) we obtain
Elvine'" ¢+ 1) ] =—RWLOK ' (D' (OH " (t+ 1) (26)
Applying (11), (23) and (26) yields formula (15). Finally, from (24) we have
e(t+N)=HG+NPG+N—DxG+N—-1]|t+N—D +
P+ N—Dwt+N—D 14+ v+ N) (27)
For N=2, by iteration for (25), we have the relation
X(+N—1|t4+N—1)=¢Ut+N—1,t—-Dx(t—1|t—1)+

+ N—1

Z@(t+N — 1, ){[I, — KOHMING— 1wl —1) — K(DHv(i)} (28)

where we defme G+ N—1,t+N—-1)=1_, and for i<t+ N—1, define
P(t+N—1,0) =[], — KG+N—1DHG+N—-D |+ N—2) X =+ X
I, —KG+1DHGA+ 1) o) (29)
Noting that v(¢) is uncorrelated with ¥(¢—1[{¢—1), from Assumptions 1~3 and (27) ~
(29) we have
Elv(t)e" (t + N) ] ———R(I)KT(I)Q')T(t-i-N*— 1,0 )" G+ N—1)H"(t+ N) =

CROK & ([[[], — KG+DHG+DTO ¢+ DVH (t+ N (30)

=1
Substituting (11) and (30) into (23) yields formula (16). It is obvious that Equation (17)
holds. From (13) and (22) we directly obtain (18). Since v(z|t+N—1) &€ L(g(t+N—1),
o, g(1)), we see that g(t+ N) is uncorrelated with v(¢lt+ N—1). Applying (14) and
(23), we easily obtain (19). The proof is completed. B
Corollary 1. M, (¢{t+ N) can be computed recursively as
M,t|t+N)=D, G, NYH' ¢+ N)Q. ' (t+ N)
D,(¢t,j) =D, (tyy—D[I,—KG+;j—1DHG+;—1D "¢ (t+5—1) (31)
D,(t,1) =—RMOK' WO (), j =2,3,,N

Corollary 2. For N.=0, the non-recursive optimal measurement white noise estimators

are given by

N
b t+N)Y = D> Mt | t+Deglt+ i (32)

where M, (¢t|t) =R()Q, ' (¢).
2.2 Optimal input white noise estimators

Theorem 2. For the time-varying system (1)~ (Z) with Assumptions 1~3, the opti-
mal input white noise estimators are given as
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wilt+N)Y=20 (N < 0) (33)
wlt+ D =QWI'wWH " +1D)Q '+ De(e+ 1) (34)
w | t+N)=pG|t+N—D+M, | t+Nelt+ N) (35)
where N=1,2,++, and the smoothing gains are given as

M, |t+ 1D =QOIr H"¢+DQ e+ 1) (36)

N—1

M,(t|t+N) =QWIr" W { [[[L—KG+DHG+ DT 0" ¢+ 1) X

i=1

H'(:+ N)Q.' (+ + N) (37)

The error variance matrices are given by
P.(t|t+N)=P, | t4+N—1DD—-M,G|t+NQG+NM:E(t|t+N) (38)
with initial value P (z]|2) =Q(2).
Proof. The proof is very similar to that for Theorem 1, and is omitted.
Corollary 3. M, (¢|t+ N) can be computed recursively as
M, (t|t+N)=D_,¢, NYH ¢+ N)Q'(t+ N)
D,(tyj) =D, (t,j — DI, —KGt+;—DHG+;—D]"®"(t+;—1) (39)
D,(t, 1) =Q®r' @, j = 2,3,~,N

Corollary 4. For N_>=0, the non-recursive optimal input white noise estimators are
given by

N
w | t+N) = > M, | t+DeCt+1) (40)

Remark 1, Theorem 1 is presented for the first time in the literature. Theorem 2 was
given by Mendel''?! under the assumption that I'(¢) is of full column rank. Here the meth-
od of the proof for Theorem 2 is different to Mendel's as in [1] and [ 2], and the assump-
tion that I'(¢) 1s of full column rank is avoided.

Remark 2. Equations (12) and (33) show that the white noise predictors are equal to
zero because the white noises are orthogonal to linear space generated by the past measure-
ment data,

3 Steady-state white noise estimators

Assumption 4''%), System (1),(2) is the time-invariant system with constant matrices
()=, I'(t)=I, Ht)=H, Q(t)=Q and R(¢t) =R, and satisfies the condition that @ is
a stable matrix, or (®,H) is a completely observable pair and (&,I") is a completely con-
trollable pair, or (&, H) is a completely detectable pair, and (&,I'Q) is a completely stabi-
lizable pair for any Q with QQ™=Q.

For the time-invariant system (1), (2) with Assumptions 1 ~4, there exists the
steady-state Kalman filter'*"'*, i.e. , P+1]|2)—3, K()—>K, as t—>oo, and from (4)~
(7) and (10) the steady-state Kalman predictor is given by

xt+11l D=8 |{t—1)4+ K,e(r) (41)
e(t) = y() —Hx(t]t—1) (42)

K, = oK (43)
K=3H'"\HXH"+R]™ (44)

where the innovation g(z) is computed recursively via (41) and (42) with arbitrary initial

value ¥(1{0), and I is a unique positive definite solution of the steady-state Riccati equa-
tion

S=¢@[S—SH"(HZH" +R)"H3]®" +1QI" (45)
Notice that from (11) the variance matrix Q. of the steady-state innovation is given as
Q = HZH'+R (46)

In Theorem 1 and Theorem 2, as t—oco, we obtain the following Theorem 3 and Theorem 4.
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Theorem 3. For the time-invariant system (1),(2) with Assumptions 1~4, the stead-
y-state measurement white noise estimators are given as

y(t | t+ N =10 (N < 0) (47)
p(t | 1) = RQ.'e(t) (48)
p(t | t+N) =3 | t+N—1)+M(N)e(t+ N) (49)
M,(N) =—RK'®'[ (I, —-KH)'¢" |"""H™Q."! (50)
and the steady-state error variance matrices are given bv
P,(t | t+ N) = R(N<0) (51)
P,(t! ) = R—RQ.'R (52)
PG |t+N)=P,t|t+N—1)—M(NQMI(N) (53)

Theorem 4. For the time-invariant system (1),(2) with Assumptions 1~4, the stead-
y-state input white noise estimators are given as

w( | t+N)=0 (N<I0) (54)
wCl)=20 (55)

wit !l t+N) = t+N—-—1D)+M,(N)e(t+ N) (56)
M,(N)=Qr'!\ (I, —KH)'" |""H'Q" (57)

and the steady-state error variance matrices are given by
P.(t|t+N)=Q (N < O)
P,(t|t+N)=P,t]|t+N—1)—M,(N)QM.(N) (58}
with initial value P_(z{1) =Q.
Corollary 5. For the time-invariant system (1),(2) with Assumptions 1~4, the non-
recursive optimal white noise estimators are given as

N

bt t+N) = > M, (Det+ i) (59)
IEU

w(t | t4+N) = > M, (Dg(t+1) (60)
i ==0

with definition of M,(0) =RQ"', M. (0)=0.

4 White noise innovation filters and Wiener filters
Theorem 5. For the time-invariant system (1),(2) with Assumptions 1~4, the white
noise innovation filters are given by

vl t+N) = Li(qg et + N) (61)
w(t | t+N)=LN(g Delt+ N) (62)
"' 1s the backward shift operator, ¢”'g(t) =g(t—1), and the polynomial matrices

where g
are defined as

(q_l) =0 (N <T0)

L% (g") = EM ()g™N, 8= v,w,N>=0 (63)
Proof. Introducing the forward ‘shlft operator g, ge(t)=g(t1T1), from (59) we have
p (] t+ N) = ZMT_,('i)q"_Ne(t—W—N) (64)
i=0
which yields (61) and (63) with §=v. Similarly, Equations (62) and (63) with 8= w
hold. [

Remark 3. The innovation filters (61) and (62) can be considered as filters with the
transfer functions LY (¢™ ') and L% (¢ ') and input g(t+— N).

It 1s well known that a filter 1s called Wiener filter if it can be expressed as a transfer
function form with the measurement signal as input. In order to obtain the white noise
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Wiener filters, we shall discover the relation between the innovation g(¢) and measurement
y(¢). This relation will be described by the autoregressive moving average (ARMA) inno-
vation model. Substituting (42) into (41) yields

x(t+11 D =wx@|t— 1+ K,y (65)
v, =¢—K,H (66)
where ¥, is a stable matrix"'>. Equation (65) can be rewritten in the transfer function
form as
xit+11=U,—q¢ ' ¥,) K,y (67)
Substituing (67) into (42) yields
y(¢) = HU,—q '¥,) " K,y(¢t — 1) +g(t) (68)

Applying the formula of matrix inverse, (I, —q¢ ' ¥,)" =adj(I, —¢ ' ¥,)/det(I, —q ' ¥,).
From (68) we obtain the ARMA innovation model

Alg D y@) = ¢(gDe(t) (69)
where we deline

$(qg7 ') = det(I, — ¢ ¥,)

A(g") = ¢(g ™)1, — Hadj(I, —q¢ ' ¥,)K,qg" (70)
where (¢~ ') is a stable polynomial, i.e. , all zeros of ¢(q) lie outside the unit circle be-
cause ¥, is a stable matrix,

Theorem 6. For the time-invariant system (1), (2) with Assumptions 1~4, the as-
ymptotically stable white noise Wiener filters are given by

(| t+N) = ¢ ' (LY (g A Hy(t+ N) (71)
w(t|t+N)=¢g ' (g"HLY(g HYA(g )Dy(t+ N) (72)
They can be expressed as
g ') vyt | t+ N) = Ki(gDyt+ N) (73)
g DIwlt]t+N) = Ki(gDyt+ N) (74)

where we define that
w(g) = Ly(g DA ), K¥(g') = Ly(g"HYAg) (75)

Proof. From (69) we have g(t+N)=¢ '(¢"')A(qg" ") y(t+ N); substituting it into
(61) and (62) yields (71) and (72). Since ¢(g¢~ ') is a stable polynomial, the Wiener fil-
ters (71) ~(74) are asymptotically stable, Therefore, Theorem 6 holds.

S Simulation examples— Bernoulli-Gaussian white noise estimators
The Bernoulli-Gaussian white noise can be used to describe the reflectivity sequence

for seismic data processing in oil exploration'’’?), The Bernoulli-Gaussian white noise 6(z)
is defined as

(t) = by () go(t) (76)
where 6,(¢) is a Bernoulli white noise taking values 1 and 0 with probabilities
P(ba(t) = 1) — Ag& P(ba(t) — O) = ] _'Aa (77)

and g,(¢) is a Gaussian white noise with zero mean and variance ¢, , and is independent of
b,(t). Hence the mean and variance ¢; of §(¢z) are given as

E0(t) = 0, 05 = Awy, (78)
The Bernoulli-Gaussian white noise with a time-varying coefficient c(2) is defined as
9(t) = c()by(t) gy () (79)
Example 1. Consider the time-varying system

) 1 0 _2 2nt

COS ——
x(t+1) = . 2wt x(t) + 300 {w(t) (80)

0.5+sin—— O
- 300 | 1 )
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v T 2t "
y(¢) = |0, 1+0. 2COS§%' x(t) + v(t) (81)
_ . 2wt ) N 2t
w(t) = (1+o. Lsin 25 )bw(t)g,w(t), v(t) = (H—o. lcos 25 )bv(r)gv(z) (82)

where w(¢) and v(¢#) are independent Bernoulli-Gaussian white noises with the time-varying
coefficients, Taking N=0,3, ¢%. =1, ¢, =0.03, A,=0.19, 1,=0.2, x(0|0)=0, P(0|0)
=0.11I;, and applying Theorem 1, we obtain the optima. measurement white noise estima-
tors v(t|t) and v(t|t+3). The simulation results are shown in Fig. 1 and Fig. 2, where
the points denote v(z|¢) or y(z|t+3), and the lines denote v(¢). The error variances are
shown in Fig. 3, where the dashed line denotes P,(z|¢) and the solid line P_(¢t|t+ 3).
From Fig. 1 and Fig. 2 we see that the accuracy of v(z|¢+3) 1s higher than that of v(¢|¢),

and from Fig. 3 we see that the curve of P,(t|t+3) lies under that of P,(¢t!t) because E-
quation (19) yields P, (¢t +3)<< P, (¢|1).

o
£ + !
: 3
=
—2
O 100 200 300 0 100 200 300
t/step t/step
Fig.1 Bernoulli-Gaussiaa measurement Fig. 2 Bernoulli-Gaussian measurement
white noise v(z) and filter »(z [¢) white noise v(¢) and smoother v{¢{¢t-+3)
0. 0. 25
e P_(tit+1)
o 0. 20
a3 + P _(tit+3)
i >~
~ O =
3,,; Q‘ﬁ 0.15
“~ 0 Iy
2 T 0.10 |
> 0. : S o - : P
AL ‘ 7\ :3 0. 05 .
0. | ' .=' P
0 0 - ‘L
0 100 200 300 O 100 200 300
t/step t/step

Fig.3 The error variances P, (t|¢t) and P,(¢|t—3) Fig.4 The error variances P (¢|¢t+1) and P,(z{t+3)

Example 2. Consider the time-varying system (80)~(82). Taking N=1,3, aiw =1,
s, =0.01, A,=0.2, 2,=0.3, x(0]0)=0, P(0|0)=0.11,, and applying Theorem 2, we
obtain the optimal input white noise smoothers w(t|t~—1) and w(¢|¢+3). The simulation

results are shown in Fig. 5 and Fig. 6, where the points denote the estimates w(¢|t+1) or
w(t|t+3), and the lines denote the true values w(z). We see that the accuracy of w(z]t+3) is

higher than that of w(¢l#+1). The error variances are shown in Fig. 4, where we see that
P, (elt+3)y<<P_(¢t|t+1).
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w(t), W(tlt'l_l)
W(t)f W(t II"'_?))

39 100 200 300 35 100 200 300
t/step t/step
Fig.5 Bernoulli-Gaussian input white noise Fig. 6 Bernoulli-Gaussian input white noise
w(t) and smoother w(z(t+1) w(¢) and smoother w(z|t+1)

6 Conclusion

A unified and general white noise estimation theory has been presented based on the
Kalman filter. It overcomes the drawback and limination of Mendel's optimal input white
noise estimators and Deng’s steady-state white noise estimation theory. It has solved the
following five problems: input and measurement white noise estimation; white noise esti-
mation for both time-varying and time-invariant systems; optimal and steady-state white
noise estimatiors; white noise innovation filters and Wiener filters; white noise filtering,
smoothing and prediction. It can be applied to oil seismic exploration, communications,
signal processing and state estimation, and provides a new tool to solve the state and signal
estimation problems.
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Call for Papers about SPIE MIPPR'(03

Multispectral image processing and pattern recognition 2003 (MIPPR'03) will be held on October 14 —
16, 2003, 1n Beijing, P. R. China, MIPPR is an international conference on multispectral image processing
and pattern recognition. It is held every two vears. The past two conferences were both held successfully in
Wuhan, P. R. China. This conference provides an opportunity for scientists, engineers and graduate
students to present and discuss new problems, solutions, and technologies in the area.

Conference topics include (but are not limited to) .

1. Mutispectral image acquisition « Data fusion and mining
* Infrared imaging 4. Pattern recognition and 3D Vision
« Microwave 1maging « Classification techniques
» L.idar radar imaging » Neural networks
« Ultrasonic imaging « Calibration
« Multispectral and hyperspectral imaging » Stereovision
+ Medical imaging + Shape from X
2., Multispectral Image Processing * 3D modeling and representation
* Infrared 5. Parallel Processing of Images
« Microwave « Algcrithms
» Lidar and radar ¢ Structures
» Ultrasonic « Tools
« Multispectral and hyperspectral v Systems
« Medical image processing 6. Optimization Techniques and Iterative Algorithms
3. Image analysis techniques for Image Recognition
« Image filtering » Sequential and parallel algorithms
« Wavelet and fractal analysis « Optimizations techniques
« Edge detection « Interfaces of optimization technique with image
¢ Segmentation processing and pattern recognition
» Feature extraction 7. Applications
« (Object recognition and tracking » Commerce, ndustry, security, multimedia,
e Image sequence analysis medicine, culture, and communications

* Image indexing
Important Dates
Abstract Due Date; 10 March 2003
Camera-ready Date. 30 July 2003
Contact us
National Lab. of Pattern Recognition, CAS Institute of Autometion, Beijing, P. R. China
Fax: +86 10 62551993 E-mail: mippr@nlpr. 1a. ac. cn
Web. http.//nlpr-web. ia, ac. cn/ MIPPR/



