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Abstract Discovering frequent itemsets or itemsequences 1s an important phase in mining associa-
tion rules. This paper presents two new algorithms for discovering frequent itemsequences called
Dfis and Dfisp, which are based on suboperators of itemsequence sets and data partitioning tech-
niques. Dfis is an algorithm with one-pass over databases and Dfisp 1s with two-pass over
databases. Experimental results show that using suitable number of data partitioning, Dfisp could
keep memory usage space within acceptable ranges.,
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1 Introduction

Association rule mining is an important problem in the data mining. It was first intro-
duced in 19931, Let I={i,,i,,°*"+i,,} be a set of items. Let database D be a set of trans-
actions where each transaction ¢ is a set of items (called izemset) such that t & I. Now con-
sidering an arbitrary itemset I, &I, the support of I, is defined as the percentage of trans-
actions containing I, in D (i.e., support(I,)=|{t €D|I,Z¢t}|/]|D]). An association rule
is an expression of the form I, =1,, where I, and I, are itemsets, I, [1I, =¢. The rule
I,=1I, holds with con fidence(I,=1,) in D, which is the percentage of transactions contai-
ning both I, and I, among those transactions containing I, (i.e., confidence(l,=1,) =
support(I, UI,)/support(I,)). The problem of mining association rules is to find all rules
that satisly minimum support and minimum con fidence constraints,

In general, the problem of mining association rules can be divided into two sub-
processes: 1) Find all frequent itemsets which satisty at least the minimum support; 2)
Generate all association rules from the found frequent itemsets which must satisty the min-
imum confidence. The first sub-process is more complex and challenging. The most popu-
lar mining theory is that all nonempty sub-itemsets of a frequent itemset must be fre-
quent''. Based on such a theory, Apriori'! was given as the classical algorithm in mining
association rules. There have been some methods on improving the efficiency ol Apriori,
including Partition'”), DHP"!, Sampling'*. However, most of the earlier work still fol-
lows the Apriori process (repeatedly scanning the database), so mining efficiency had been
limited. Recently, there are some excellent work in reducing both the number of database
passing and the size of candidate itemsets. Close'® is an algorithm based on the new theory
that all nonempty closed sub-itemsets of a frequent closed itemset must be frequent, which
could be more efficient by pruning the closed itemset lattice. FP-Tree'®! is the first algo-
rithm that mines frequent itemsets without candidate generation.

In this paper, we propose a novel solution to discovering frequent i1temsequences

through creating the operating theory of itemsequence sets, which can generate frequent
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itemsequences by 1 or 2 passes over databases and withcut candidate generation.

2 Set of Itemsequences and its operators

In this paper, we use term itemsequence rather than itemset. In short, an itemse-
quence i1s an ordered list of items. Certainly, a tuple of the transaction database can be
characterized as an itemsequence as well as an itemset. However, the comparison between
itemsequences can be easier than between itemsets. If D={d,,d,,***,d,} be a transaction
database that every tuple contains an itemsequence, then we may simply see such a data-
base as a set of itemsequences. Therefore, the problem of discovering frequent itemsets
may be transformed into processing between i1temsequences. In this paper, we introduce
the lattice framework of the itemsequence set and generate the set of frequent itemsequenc-
es through the operators on an itemsequence set, There have recently been more interests

00 A maximal frequent itemse-

in minihg maximal frequent patterns from databases
guence 1s such a frequent itemsequence that cannot been contained by any other frequent
itemsequences-'™. This paper focuses on discovering an efficient and novel method to mine

the set of maximal {requent itemsequences.

Example 1. lLet SIS, =1{AB,CD} and SIS,={ABCD,AD}, then itemsequence AB&
SIS, and AB& SIS, ; {AB}CSIS,; {AB) SIS, ; SIS, USIS, ={AB,CD,ABCD,AD};
SIS, (SIS, =.

In fact, AB is a subsequence of ABCD in SIS, though AB& SIS,. This fact can be
useful to discovering relations between itemsequences, so we should pay closer attention to
these relations. For this sake, we first give the suboperators on an itemsequence set.

Definition 1(Suboperators on sets of itemsequences). lLet IS be an itemsequence. Let
SIS, and SIS, be two itemsequence sets defined 1n I. Then

1)1S sub-belongs to SIS, f J1IS,&851S,: IS &1S;, denoted by I1S&,,,SIS,.

2)SIS, sub-contains SIS, if VIS, €SIS,.: IS, €,,5IS,, denoted by SIS, C_,SIS,.

3)Sub-intersection of SIS, and SIS, define as SIS )., SIS, ={IS|IS€ ., SIS, and

ISE€ SIS ).
4)Sub-union of SIS, and SIS, define as SIS, U .. SIS, = {IS|IS€ SIS, or ISE
SIS, ;.

Example 2. Consider SIS, and SIS, as the same as example 1, then itemsequence

AB& SIS, but AB€ _,SIS,.

These suboperators characterize such hidden relations within itemsequence sets that

cannot be found by typical set operators. They may be used to find potential relations in
Itemsequences.,

3 Discovering Frequent 1temsequences Based on Suboperators
In this section, we employ two sets in the memory called SIS and SIS™ to record re-
lated sets of itemsequences. The notation is given in Table 1.

Table 1 Notation

Names Contains
SIS The set of itemsequences obtalned by scanning the database
SIS The set of {requent itemsequences produced
Sup_count(IS) The support count of itemsequerce IS

3.1 Dfis algorithm
Fig. 1 gives the pseudo-codes of Dfis and its subprocedures. In Algorithm 1, each of
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iterations is related with a tuple of the database and consists of three phases. First, an
itemsequence(called IS) is extracted from a tuple of the database. Next, IS is tried to
enter SIS and its support count may be recalculated. Finally, SIS* 1s updated through IS
and new SIS. As Produce_I1S(d,1S) is easy to be implemented, its discussion is omitted
here.

3.1.1 Join(IS,SIS)

This process puts IS into SIS and initializes its support count if it has not been in
SIS, or recalculates its support counts if it has been in SIS. Algorithm 2 gives its pseudo-
code.

3.1.2 Make_fre(IS,SIS,SIS” ,minsup_count)

Join(IS,SIS) may change the supports of elements in SIS, so it is possible that new
frequent itemsequences are produced. Make fre (IS, SIS, SIS, minsup_count) tries to
find frequent sub-itemsquences of IS. Algorithm 3 gives its pseudo-code.

In algorithm 3, Prune(IS*,SIS*) and Prune(IS*,SIS) are called. As was stated
above, we only put all maximal frequent itemsequences into SIS*. It IS* is frequent, it is
reasonable to prune the sub-itemsequences of IS* in SIS* to get better performance.
Also, when IS™ is frequent, its sub-itemsequences are pruned from SIS because they no
longer need to be recorded. Algorithm 4 gives the process to delete an itemsequence and its
sub-itemsequences from an itemsequence set,

Algorithm 1. (Diis Algorithm) Algorithm 3. Make_fre (IS, SIS, SIS* ,minsup_count)
1) Input(minsup_count) ; 1) FOR all IS* € o { IS} DO BEGIN
2) SIS<; SIS* —JF; 2)  Sup_count (IS*)=0;

4) Produce_18(d4,IS);
4) Join(IS,SIS);
5) Make_1re(IS,SIS,S5IS*, minsup_count) ;

4) IF IS*CIS** Sup-count(IS*)=
Sup_count{IS*) 4+ Sup_count(IS**);

6) END 5) IF Sup_count(IS*) >minsup_count

7) AHSWEI'"'—SIS'. 5) IF(IS*qubSIS*)BEGIN

Algorithm 2. Join(IS,SIS) 7> Prune(IS*,SIS*);//see Algorithm 4
1) Sup-_count (IS)=1; flag=0; &) SIS*=SIS"U{IS"};

2) FOR zait I5,€ SIS DO 9) END

3) IF IS=1S; BEGIN 10) Prune(IS*,SIS);//see Algorithm 4

4) Sup_count (IS;)=Sup_count {(IS5;)+1; 11) END;

5) flag=1; Algorithm 4. Prune(I5;,SIS,)

6) END; 1) FOR all IS; € SIS, DO

7) IF flag=0 SIS=SIS U {IS}; 2) IF 1S3 € s, {181} SIS =818, —{18:};

m

Fig. 1 Dfis Algorithm and its subprocedures

3.2 Example and experiments about Dfis algorithm

Table 2 gives a sample of transaction databases. Let us try to discover its maximal
frequent itemsequences through Dfis Algorithm. Table 3 shows the execution of Dfis with
minimum support count 2 on the sample database.

Table 2 Sample database Table 3 Discovering frequent itemsequences with Dfis
TID Itemsequences IS SIS SIS* Note
1 | A,B,C, D 0 %} )
2 B,C, E 1 |ABCDI{(ABCD,1)} %]
3 A, B, C, E 2 |BCE |{(ABCD,1),(BCE,1)} { BC}
4 B, D, E 3 ABCE {{(ABCD,1),(BCE,1),(ABCE,1)} {{BCE) Deleted BC in SIS
5 A, B, C, D 4 |BDE |{(ABCD,1),(ABCFE,1),(BDFE,1)} |{BCE,BD} Deleted BCE 1in SIS
5 |ABCD {{(ABCD,2),(ABCE,1),(BDE,1)} | { BCE,ABCD} | Deleted BD in SIS*
Res {(ABCE,1),(BDE,1)} {BCE,ABCD} | Deleted ABCD in SIS
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Obviously, Diis 1s an one-pass mining algorithm to databases, so it has the same [/O
costs as MAFIA-', but less than Apriori'"', Close-*! and FP-Tree'®!. For one-pass mining
algorithms, they would suffer from main memory problems if any effective measures are
not taken. The memory usage of Dfis algorithm is dominated by SIS and SIS* expenses.
Theoretically speaking, SIS would take O(||D|) memory space in the worst case; and
SIS" 1s exponentially growing with | I|, where I is the set of all items in D. In fact, Dfis
algorithm prunes in time sub-sequences of the maximal frequent itemsequences that have

generated in SIS and SIS*. With such pruning techniques, we may drastically reduce the
number of elements in SIS™, and control the size of SIS as possible. In order to assess rel-
ative performances of memory usage, we implemented Diis algorithm and conducted some
experiments. The first experiment about Dfis was on a series of databases with the sizes
from 10K to 100K. If minsupport is 20 % , the memory spaces of SIS and SIS* with increas-
ing sizes of the databases are shown on Fig. 2(a). The second experiment was done on a data-
base with 100KB using different minsupports. Fig. 2(b) shows the experimental results.

These results tell us that the SIS”™ is stable with increasing the sizes of databases and
the numbers of minimum supports. However, we must pay more attention to the increas-
ing sizes of SIS with growing the sizes of databases.
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Fig. 2 Sizes of SIS and SIS on different databases and minsupports about Dfis

4 Improving Dfis algorithm by partitioning data
4.1 Dfisp algorithm

Dfisp algorithm partitions the database into data segments that are small enough to be
effectively handled in memory. For each segment, locally frequent itemsequences are a-
chieved by applying the above Dfis method to this segment. Dfisp algorithm consists of
two passes over the database. The first pass generates all locally frequent 1temsequences
through iteratively calling Dfis to all segments. The collection of all locally trequent 1tem-
sequences becomes candidates for frequent itemsequences on the whole database. The sec-
ond pass over the database produces global frequent itemsequences through testing sup-
ports of these candidates.

Theorem 1. Let a database D be partitioned into n nonoverlapping segments D,, D, ,
«+,D,, and global minimum support count be minsup_count. The local minimum support
count for each segment D;, called minsup_count,(1=1,2,--yn), is tormed by minsup_
count,=minsup_count " ||D;||/|D||. An itemsequence cannot be frequent in D with min-
sup_count if it is not frequent in any D, with minsup _count,(1=1,2,+*.n).

Proof. lLet sup_count;(IS) be the support count of itemsequence IS in D;. It IS 1s not
frequent in any D, with minsup _count,(1=1,2,+-,n), 1.e.,

Vi=1,2,vn: sup_count,(I1S) <minsup._count,
Then the support count of IS in D, sup_coun (IS), should be the sum of all sup_count,
(IS) nmnD,i=1,2,yn).,1.e.,

sup _count (IS)= Esuﬁ_counti (1S) <Eminsup_munti = Z(minsup_,munt "D /| D)=
minsup_count - (Z“ D)/ |D|=minsup_count™ | D| /| D| =minsup_count




776 ACTA AUTOMATICA SINICA Vol. 30

Therefore IS 1s not frequent in D.

In order to conveniently be called in Dfisp, algorithm Dfis is rewritten Algorithm 1",
In Algorithm 1*, SIS is first cleared, but SIS” is not cleared to keep all local frequent
itemsequences. Algorithm 5 gives the description of Diisp which calls Dhis(D;, minsup_

count;y SIS™).

Algorithm 1* (Dfis(D;, minsup_count; ,SIS*))
1) SIS« J;
2) FOR all d€ D; DO BEGIN

Algorithm 5(Dfisp Algorithm)
1) Input(n, minsup_count) ;

2) SIS*<

3) Produce_ IS(d,IS); 3) Patition_DB(D,D;,D;,*,D,);
4)  Join(IS,S18); 4) FOR i=1 to n DO BEGIN

5) Make_{fre(IS,SIS,SIS* ,minsup_count;); | 5) minsup_count; =minsup-count”
6) END; 5) Difs(D;, minsup-count;, SIS*);

6) END

7) FOR all IS* € SIS support(I1S*) =0;
8) FOR all d& D DO BEGIN

9) Produce-IS(d, IS);

D |/IID]

10) FOR all IS* € SIS*
11) [F IS* € oIS} support(IS*) =support(IS")+1;
12) END

13) FOR all IS*€ SIS
14) IF support(IS*)<minsup_count SIS*=SIS*—{IS*};
15) Answer<SIS*,

Fig. 3 Modified Dfis procedure and Dfisp algorithm

4.2 Experiments about Dfisp algorithm

After using the partitioning technique, Dfisp makes the number of itemsequences that
are recorded in memory to be reduced, so the size of SIS can be acceptable for large data-
bases. We conducted an experiment on the different databases whose results are shown in
Fig. 4(a). In this experiment, global minsupport is 20%, each of the analyzed databases is
partitioned into the 5 segments with the same size, Comparing with the results that Fig, 2
(a) shows, SIS of Dfisp needs less memory space of than Dfiis,

In order to further test the efficiency of Diisp algorithm, we conducted some experi-
ments on a database of 1IMB. We first fixed the partitioning number to 5 and the database
is divided into the segments of the same sizes. Fig, 4 (b) shows the changes of SIS and
SIS" in memory space with ditfferent minsupports. We can observe that Dfisp takes rela-
tive stable memory spaces with different minsupports.

Then, We fixed the minsupport to 5%, and tracked the execution time on the data-
base with different the partitioning numbers. Our experimental computer is Pentium III
with 256 M RAM., The results are shown in Fig. 4(¢). In fact, an optimized partitioning
number exists for a specific database. By optimized partitioning technique, necessary

memory space is cut down and the whole execution time can also be controlled within an
acceptable ranges.
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S Conclusion

We presented the algorithms, called Diis and Diisp, for efficiently discovering maxi-
mal frequent itemsequences. Dfis is based on the operating theory on set of itemsequences.
Unlike most existing algorithms, it does not need to repeatedly scan databases. It only
employs one pass over the database. Dfisp is an improvement to Dfis by data partitioning
which makes memory usage space to be controlled and CPU overhead to be lightened in
large databases. We conducted a serial of experiments to evaluate Dfis and Dfisp algo-
rithms. Experimental results showed that Dfisp 1s an efficient algorithm in execution time
by using an optimized partitioning number.
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