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Adaptive and Practical Output Tracking Control of Nonlinear Systems"
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Abstract This paper studies a globally adaptive and practical output-tracking control of linearly
parameterized nonlinear systems with uncontrollable unstable linearization. These class systems
are neither linearizable in the feedback nor affine in the corntrol input. The asymptotic output
tracking (even local) is usually not possible because the linearized system has uncontrollable
modes whose eigenvalues are on the right half plane. Using the modified adaptively adding a power
integrator technique as a basic tool, we construct a smooth adaptive state feedback controller that
can ensure all signals of closed-loop systems are globally, uniformly and ultimately bounded and
steer the output tracking error to a small neighborhood of the origin. Simulation results show that
the controller is feasible and effective.

Key words Adaptive and practical output tracking, adaptive smooth state feedback, uncontrolla-
ble unstable linearization

1 Introduction

One of the long-standing problems in adaptive design is the so-call matching condi-
tion. This condition implies that uncertainties of the plant model are in the span of con-
trol, 7. e., they can be directly cancelled by control when they are known, During several
decades this condition presented a firm limitation on applicability of the adaptive control-
lers until it was relaxed to the extended matching condition'''?), In turn, the barrier of the
extended matching condition was completely overcome with the use of a new recursive de-
sign called adaptive backstepping'®. At the same time, output tracking control based on
backstepping has been researched by many experts. The recent survey'*! and two mono-
graphs">'* provide a fairly complete review and detatled report on the major developments
for linear and nonlinear systems.

At present, most of the existing solutions to the problem of output regulation, partic-
ularly, the nonlinear regulator theory'®’, are derived based on the assumption that the Ja-
coblan linearization of nonlinear systems i1s stabilizable and detectable. In fact, stabili-
zability and detectability, as illustrated in [6~9 |, are two crucial conditions for the nonli-
near regulator problem to be solvable by either state or error feedback. To the contrary,
when the systems under consideration are inherently nonlinear, little attention has been
paid to the adaptive output regulation problem in the literatures, except for the recent pa-
pers[ln.u]'

In this paper, we concentrate on the adaptive output tracking of a class of systems
which are inherently nonlinear with uncontrollable unstable linearization. We suppose that
the reference signal i1s a known, bounded and time-varying signal whose first derivative is
also bounded. The control objective 1s to seek a smooth adaptive state feedback control law
such that the output of the system globally follows the reference signal. In Section 2, we
will first formulate the problem we want to solve., Then two lemmas which will be used
constantly are given. Section 3 contains our main results and Section 4 contains a simula-
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tion. Conclusion is drawn in Section 5.

2 Problem formulation and preliminaries
Consider the nonlinear system as {follows,

.1;31 = dl (t,x,u):z:;l +0T¢1 (Il)

: (1)
.i'ﬂ —— dn(t,xau)u"’" +6T¢H(I1 !"'!-In)

y = I

where x=(x,,**,x,) €ER",u€ R and y€ R are the system state, input and output, re-
spectively, For i=1,+,n, the function®..R*—R?,%,(0)=0is C' and d;(¢,x,u)#0 is a C’
real-valued function of its variables (¢,x,u). 6€ R?is an unknown constant parameter vec-
tor and p; is an odd positive integer. In the case of feedback linearizable systems, i. e.,
p.=1, and d;(¢tyx u)=11toralli=1,-,n, system (1) is feedback equivalent to a chain of
linear integrators. Its global stabilization and global asymptotic output tracking have been
obtained'®). In the case p,>>1, system (1) becomes a highly nonlinear system whose Jaco-
bian linearization may have uncontrollable modes associated with eigenvalues on the right-
half plane. Moreover, the system is not affine in the control input. All of this makes the
problem of asymptotic output tracking for nonlinear system (1) far more difficult than for
feedback linearizable systems. In particular, unlike in the feedback linearizable case, stabi-
lizability of system (1) does not necessarily imply the existence of a solution to the track-
ing problem. When p;>1 and n=>>1, Qian C J and Lin W pointed out that it is not possible
to solve the global asymptotic output tracking of a time-varying reference signal by any
smooth even continuous feedback''?,

Being aware of the above statement, we concentrate on the problem of global adaptive
and practical output tracking of system (1). QOur objective is to design a smooth adaptive
feedback control law that makes the output of system (1) follow a prescribed reference
signal, with an arbitrarily small steady output tracking error. More precisely, we consider
the following control problem.

Global adaptive practical output tracking: Let v, (z) € C' be a bounded reference signal

whose derivative y,(2) is also bounded. For any €0, we will find, if possible, an adap-
tive smooth controller of the form

iy,

u = a(x,0,y,) (2)

) 0= r(x,0,y,) (3)
where 0 is the estimator of @ such that
a) all signals of the closed-loop system (1), (2) and (3) are well-defined on [ 0, +o0)
and globally bounded;
b) for every x(0) € R*, there is a finite-time T (e,x(0)) >0 such that the output of
the closed-loop system (1), (2) and (3) satisfies
|y —y, (D) |<e, Ye=T>0 (4)
In Section 2, we will present a constructive solution to the adaptive practical output-
tracking problem of system (1).
We conclude this section with two important lemmas that will be used constantly
throughout the rest of the paper.
Lemma 1'%}, For real numbers a0, $>>0 and m=>1 the following inequality holds
-‘l]’" m— 17" (5)
Lm L b
Lemma 2. Let p,,i=1,+-,n be odd positive integers and p=max{p;si=1,+,n}.
Suppose the Lyapunov function is

a << b+
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n p—p.+2
1Y — 7 | 1l a7 p
V(219 92,19) ;p_pz_‘_z | 27“9 9 (6)
which 1s positive-definite and proper and satisfies
%ghzzw 2870 1 0o+ 2|00 (7)

P==1

— -~

where 0<0<(1,06>0 and r>0 are real constants, z;1s a C' functionoft , 8=0—8, @ is the
estimate of @€ R?, and 6° € R? is a design constant vector. Then, there exist two constants

c, >0,c, >0 and a finite T >0 such that

zﬁ*_Pf'FE 2(:
p lp +2gv::\:; Cz, V= T,i=1,,n (8)
o i i

Proof. Illuminate by [12], we can easily get the proof of Lemma 2 and thus omit it
here.

3 Globally adaptive and practical output tracking
In this section, we present the main result of this paper, which provides a solution to
the globally adaptive output tracking for the nonlinear system (1) which is neither lineari-
zable 1n feedback nor affine in the control input.
Assumption A. For i=1,+-,n there are constants u, and &, such that
0 <, < d;(tyxl u) < [, (9)
Theorem 1. Under Assumption A, the problem of globally adaptive and practical out-
put tracking of system (1) is solvable by smooth state feedback adaptive controller of the
torm (2) and (3).
Proof. We begin the algorithm by introducing the odd positive integer
p = max {p;} (10)

i=1,*",n
Initial step. Let y,(¢) € C' be a bounded reference signal, whose derivative y, (¢) 1s
bounded also. Let z;, =x; —y, be the output error signal. Construct the Lyapunov function
as
zf_p1+2 1
p— P+ 2 " 2r
which is positive-definite and proper and where »>>0 is a constant to be selected, §=6—6,
0 is the estimate of 8. A direct calculation gives

V] = zf—plﬂ [d;n (t,x,u)x? T 6T¢1 (xy) — yr]

Vi(z,0) = 070 (11)

— zf_plﬂ [dl(t,x,u)x? +é#r¢1(1"1) '—3"r:| 6'1‘(6_ Wfﬁplﬂﬂ(%)) (12)

.
Since v,(t) is bounded, it can be shown that for any real number 6>>0, by Lemma 1 [ 6=
0, a= [zf_““[é’r(bl ()=, (]! and m=(p+1)/(p—p, +1)], there always exists a
smooth function £,, (2, ,é) —>0 such that

2O (2 — 5, (D] | << 84227 Py, (2,6) (13)

Define 1:1=r[zf_P1H¢1(.‘r1)'—-ﬁ(é-—ﬂo)j. Then
Vi <diel el 4ol a0 — 8T @) +06T@—0) +8 (14

Then the virtual smooth controller

i 1é aRIE S - _ -
Q, =— 2, = +p11(21 ) _ z}ﬁj,(ﬂil 96) . Bl(zl 96) > 0 (15)

L. Fi _

renders
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S, . i ol il —

V, <—222" +d1(t,x,u)zf_ﬁ+l.r§1 ‘“ﬂlzf_pl+lafl — %BT(é_rl) +56T(é—6°) +0

(16)
Since *-zp Pt p" =0, we have

vV, <— 222 +d1(t,x,u)zf"—p1+l [:c;’l —alt ] iéT(é— T ) —f—a@T(é——ﬁ“) + 0 <

T 2 ~ -
“22P+1+ﬁ1|2’i’_p1+1| I-I;l _ai”l l_(%a—l—’?l) (3-—1‘1)—|—03T(5—60)—|—3 (17)

where 7, =0,

Inductive step: Suppose at step £2— 1 there are a set of smooth virtual controllers a,,
WY # F dEfiﬂEd by

Qy = VY, 2] = X1 — Qo
Q; =— 21}91 (21 96) ’ Ly = T, — @ (18)
. aQ, —— 3&48&—} (2192, ,é) sy  Zp41 T el T @
with B, (2, ,0) >0, ,8.(2,,°*2, ,08)>0 being smooth, such that
Vk 1 <:_ (Zp+1 + _l_ Zf 21) — Zz‘Hl _I-#k 1 IZ: lpk_ I: Pe—1 —a‘b**l :l "—
(i 0 +m_1) O—1,_ )+ (k—1)0+ 0676 — ) (19)
where
1 ppit | o~
= : — 0T 4
Ve ;‘p___pﬁﬁz?_ (20)

1s a positive definite and proper Lyapunov function.
Then, in step 2, we claim that (19) holds as well. Consider the Lyapunov function

Vk — Vkml E Zk (21)

Vk =Vk—1 + zfﬂpﬁl (2, — ) = Vk-—l + 3fﬂpk+1 d*‘rkﬂ +- 6T5‘6k E /S (d; J: Lt 9T‘?5 )—

b i=1 ’

9,12 | ' o N
0 g;-ly] =Via+"" _dkxfﬂ.l + 0 wi — Z‘ gild
aak_ - a
aélﬁ— g;_lyr] "‘--<-...._'" (zf-l-l + +Zi ;) ___zzP-l-l “{'_ﬁk—l! P Pk-l"-l[x.f’; | _ap* 1]|+
- aa - k—1 aai- )
7 et 0 e =3 Gty — e~ St T2 -
=1 ! )
~ T =
(%9+m) (@ —7) 4+ (k—1)0 (29)
where
oa,_
B = T b el 2 QWicip, = gL, + a%l (23)
i=1 :
Note that
Ty ! p P& 1+1[ Py} _apk—ljl k——lzpk —1 I p_'ﬁk-1+1 I ‘Ik —a | (I:t—l-l _}_aff:_l_l-l) _

ﬂk lpk——l l p——p& H , ’Zk l ([Zk — 2-'&—148&—1 (2’;,_1 )]p"_l—l + [zk-lﬁk—-l (Zk—l ):ka_lhl) g
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i 12pk ! l p— Pk 1+ \ ( 2, { [zpk-l"z zik—l_l + (1 4+ 2272 ) (21 By ) 217 ] S

p+i

AN A I CRCRIPAN) (24)
for a smooth function 0, (2, ,**,2,,08) =0. The last relation of (28) follows from Young's
inequality.

Due to the boundedness of ¥ vy, and d;(t,x,u), similar to the proof of (13), there is
a smooth function £,, (zl yoor 2, ,0) =0 such that

| b1 _
p=p 1| AT aak 1 0a; da,_; . p—p,+1 A, _;
- k 6 d —_— ! _
Z, Wy — +1 —T YV, i X . = g
- —~ oz, | o4 Oy, - i=1 | of -
p+1 0
0+ 2, PLrlzis.zy,0) (25)

Putting (23),(24), and (22) together, we have
Vk <— (z pﬂ + - ‘|—»«"-'f+11) + 2 p pﬁl[deH] +sz O k1 i’*"-’ ka:l ).T(B—- T.) + ko (26)

Clearly, the v1rtual smooth controller

- 9y 172, ~
a, =— z, 2‘1"0&‘1(219 !zk—1;+Pk.2(21! !zk!ﬁ) p :M—E;@‘Bk(zl’""zk’g)”@ﬁ(') >O
. b -
(27)
yields
V, < < (zp—H f+1]) . p+1 a, ‘zp pp+1 [Ik+1 ”—a?] \__
AT (O —1) 4 S +0fT(0—0° (28)

The induction argument shows that (19) holds for 2#=n-+1. Hence, there exist a set

of transtormations (z,,°*,2,) of the torm (18), a smooth Lyapunov function
n p—p.+2
20 1 ~. ~
V, = i | g1 @ (29)
2 p—pi+2

and a smooth adaptive controller

u =— 2,08, (2,9), ﬁﬂ(zgé) > 0

A

0 =1 (30)
such that
V, <— G e k2T ) b+ 00T (60— 6°) (31)
Because of
0T (60— 0°) = gé’ré gué_eﬂnz | gna-aﬂuz (32)
(31) becomes
V <_ (ZP-H_,_ +2.’“p+1) gaTé_!_na | g”a__ao“z (33)

The last inequality, together with Lemma 2, implies immediately that all the solu-
tions of the closed-loop system are globally bounded and well defined over. This leads to
the conclusion that the states are globally bounded, because of the relation (18) and
boundedness of y,(¢). Moreover, from Lemma 2, for any 6>0, there exist a finite time

T>09 SUCh thﬂt

,....26_2 I_f'p—pl—l—E
y—y == |< 7<p~p1+2)] . Vi=T>0 (34)
L ¢
Therefore, for any €0, there exist 6>>0,r>0,0>0, such that
y—y|<e, ¥Yt=T>0 (35)
This completes the proof of Theorem 1. n

Remark 1. Although ¢; contains unknown parameter vector 8, we may select ¢ to
make ¢, very small because 8 is a constant vector.
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Remark 2. In many practical control systems the parameter vector @ is not completely
unknown. We may roughly estimate it previously and let 8° equal the initial estimate. This
may make [|@—0°|? very small and result in better tracking.

4 Simulation
Consider the following example
, = (1 +sin‘u)x; + 0, x,em
z, = u + 6z, +2x;) (36)
Yy = I
which is of the form (1) and where 6, and ¢, are two unknown constant parameters.
Let y,=sin(¢) be the reference signal. The object 1s to design a smooth controller
such that the output of system (36) practically follows y,. By Theorem 1, we can design
an adaptive controller as follows.

U —— 22(1+P1(Z1 ué)+t02(21!zz 95))1/5 (37)
b—z, — oz, (4, - ..g_“l.ssl )+ =t — 06— 0] (38)
2 v A .

where
X Tl = X1 7 YroRe = Ty T Qpy 561 = (x,¢7,0)7, 952 = 0,z + )", 0= (6,,6,)",

@ is the estimate of &
1 AT ) 1/3 95 )
Qy —— zlﬁl =2 (2 (1 (¢ 9"’1) )) y £ =044 48%

20 6
55 .5 Oa oy |° da : da, \* T
- ol ) S (e o2
Pz 6685 _2 k ¢2 aIl 561) aafz +]-6 axl-r?..) +4 ayr) ]

The simulation results are shown in Fig. 1 and Fig. 2 are based on the following parame-
ters: 0=(1,3)',0=0.01,0°=(2,2)",r=20,0=0. 1. The initial conditions are chosen as
I1(O)=1! IE(O):]-! 5(0):[01011\‘

5 _ 20

D
4 10
. 3
>
i I g8 0
Pag 21
1 ~10
0 :
—1 . - 20
¢ 5 10 15 20 0 5 10 15 20
t/s t/s
Fig.1 Tracking error y—y, Fig. 2 State x,

From Fig. 1 and Fig. 2, we see that all the states of the closed-loop system are global-
ly, uniformly and ultimately bounded and the tracking error becomes very small after a fi-
nite time.

S Conclusions

In this paper, the problem of globally adaptive and practical output tracking for a
class of inherently nonlinear systems has been studied. The systems may contain an un-
controllable unstable linearization. Although the asymptotic output tracking of the system
1s impossible, using the modified adaptively adding a power integrator technique as a basic
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tool we construct a smooth adaptive controller and achieve globals practical output track-
ing. A simulation i1s given to illustrate the proposed method.
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