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Abstract Using the language of differential geometry, this paper provides a fine classification of
singularities of general parallel robots. Based on the relations between singularity manifolds and
singularity distributions, these singularities are further subclassified into first-order singularities
and second-order ones, Furthermore, the second-order singularities can be distinguished as degen-
erate or nondegenerate singularities by whether they form continuous curves on configuration man-
ifolds. This paper also gives an insight into the degenerate singularities, which can sometimes be a
source of danger not only to the mechanism itself but also to workers to operate the mechanism.
Finally, a planar two degrees-of-freedom mechanism with one redundant actuator is given to illu-
minate the method.
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1 Introduction
Compared with its serial counterparts, a parallel robot (or a closed-chain mechanism

(1] Howe-

or manipulator) has much more complex singularities in its configuration space
ver, unlike its serial counterparts, for which mathematical tools have been well establishe,
study on parallel robots, especially on their singularities is still relatively limited. Moreo-
ver, up to now, there is a lack of a unified theoretical framework of singularities analysis
for general parallel robots, Some important works in this field are given as follows: Gosse-
lin and Angeles'?! classified singularities of parallel manipulators into three types utilizing
some derived Jacobian relations, but did not discuss the topological characteristics of con-
figuration spaces at singularities. Park and Kim"*! used metric on various spaces to study
singularities of general parallel mechanisms. Their results are fundamental to understand
the geometric nature of singularities in parallel robots. Merlet*", on the other hand, stu-
died extensively singularities of the Stewart-Gough platform and several of its variants.
Based on Taylor series expansion of trajectories at singularities, Kieffer'®) studied ordinary
singularities, 1solated singularities and their bifurcations, but his results were confined to
serial mechanisms.

In this paper, we use distribution and differential forms on configuration manifold to
study the geometric nature of singularities of general parallel robots, and based on topolo-
gical and geometric properties of configuration space, present a fine classification method
of singularities, We also study the topology of singularity manifold, which consists of all
singularities on configuration space. Based on relations between singularity manifolds and
singular motion directions, these singularities are further classified into first-order and se-
cond-order singularities. We analyze geometric structures of configuration spaces at dege-
nerate singularities, which give us an insight on self-motion of parallel robots in some spe-
ctal configuration. Finally, we give an example of a planar two degrees-of-freedom mecha-
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nism with one reduntant actuator to validate the method proposed in this paper.

2 First-order classification of singularities
2. 1 Configuration singularity
A general parallel robot can be descripted as the following constraint equation'!’

H.: E—>R", 0—=H(@® = [A (@), h (D] =0 (1)

%), the configuration space Q= H ! (0) of the con-

By the Implicit Function Theorem
straint system (1) 1s an n-m dimensional embedded submanifold in the ambient space F, if
and only if the rank of T,H 1is equal to m for all p € Q. However, at a point ¢& Q, if
rank(T, H)<m, Q can not be locally embedded into E. In this case, the parallel robot
with the constraint Equation (1) is in some singular configuration. This type of singularity
is called the configuration singularity (CS), since it is caused by the singularity of the con-
figuration space.

Definition 1. For a general parallel robot with the constraint Equation (1), its confi-
guration singularity occurs when the rank of the constraint equation is less than its normal
rank, that is, rank(T,H )<Um, where p denotes the configuration singularity point,

Consider the one-forms on the generalized force space T, E and differentiate the con-

straint Equation (1), and we have

(dh;+0), =0, dh,€ T;E, O0€ T,E, pEE,i=1,",m (2)
Here ( » , » ) denotes the pairing of the one-forms dh; with the generalized velocity vector
vE& T,E. Physically, these one-forms have the meaning of generalized constraint forces.
Lemma 1'%, One-forms & ,++,& €V " is linearly dependent if and only if their exterior
product is equal to zero, that 1s,
E AN ANE=0 (3)
Theorem 1. The configuration singularity occurs if and only if the one-forms dh;,i=1,
.+« ym corresponding to the constraint forces satisfy
dh, A - A dh,, =0 (4)

Proof. The result is straightforward. Since one-forms dh; can be given in local coordi-

nates by
—~ Oh, .
dhi e :dgjg 1 == 1,“',??‘1 (5)
ji=1 a@}
and
—~ Oh, O 1

It is obvious that the tangent mapping T,H has full rank if and only if dA, ,+-+,dA,, 1s
linearly dependent. Consider dh, € A'(T,E),i=1,--,m. By Lemma 1, the tangent map-
ping T ,H loses rank if and only it dA,,++,dh,, satisty (4). The theorem holds.
2.2 Actuator singularity

Regardless of configuration singularities, the configuration spaces of parallel robots

are the regular submanifolds of ambient spaces, which are called configuration manifolds.
Normally, the configuration manifold can be locally parameterized by the actuator coordi-
nates as
0:Q—R":p—¢(p) =10, (7)
where 0, (p) =[G (p) -, 8" (p) " is the local coordinates of the configuration manifold
at point p& Q.
Definition 2. When the locally parameterized equation (7) at point p& Q is not surjec-
tive, the parallel robot is in the actuator singular configuration. Here the point p is called
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the actuator singularity (AS).

Differentiating Equation (7), we have one-forms df, = (df;,+--d@, ™) & T, E, which
physically has a meaning of generalized actuator forces. Along with dh;, these one-forms
span the generalized force space T, E. Similar to Theorem 1, we have

Theorem 2. For general parallel robots with the constraint Equation (1), the actuator
singularities occur if and only 1f

dhy A - Adh, ANdOi A - AdEET™ =0 (8)

Proof. Assume that parallel robots are in regular (non-singular) configurations. Then
all actuator coordinates (6, ,+@~ ™) form the local coordinate system of the configuration
manifold. Evidently, we have T, Q =span{df.,-+,dfi "} and T, Q* =span{dh,, -,
dh, }. Since

T,E=T,QPT,Q" (9)

we obtain
T, E = span{dh,,++,dh, ,d0,,+,d0.7™} (10
by Lemma 1, Theorem 2 holds. u

(10) 1s also named generalized force closure condition of mechanical system controlla-
11 Theorem 2 can be extended to the parallel robots with re-
dundant actuators as follows.

Theorem 3. For a general parallel robot with { redundant actuators 0% ,k=1,+-,1, its
actuator singularities occur if and only if the following condition is satisfied

bility in robotics literature

dim(span{dh, s+ sdh,, ,d0} -+, d027™ ,d07 77, oo, dOTT}) < m (11
Proof. By the generalized force closure condition (10), we have
T, E = span{dh,,*,dh,,db},+,d077",dO 7" , e, dO2 "} (12)
Since dim(E) =dim(T, E)=n, Theorem 3 holds. O]

When a parallel robot is in actuator singular configuration, although all actuated
joints are fixed, there still exists an instantaneous inner motion in the mechanism. (11)
shows that actuator redundancy can remove the singularities of parallel robots and improve
their performance'!).

2.3 End-effector singularity

Let f:Q—W be the forward kinematic mapping of parallel mechanisms, where W is
the workspace of the end-effector., If T, f 1s surjective, then f 1s the diffeomorphism from
the configuration space to the workspace, which shows that the configuration space also
can be paramenterized by the end-etfector coordinates.

Definition 3. End-effector singularity (ES) happens when the configuration space Q
can not be parameterized by the local coordinates corresponding to end-effector coordi-
nates.

Physically, end-effector singularity means the end-effector loses degrees of freedom.
Another equivalent explanation is that the motion of the actuated joints could result in no
motion of the end-effector when the end-effector singularity happens.

Let x=[x; +** x,-.]" denote the end-effector coordinates. Similar to (8), we have
the sufficient and necessary condition of end-etfector singularities as the following

dh; A = Adh, Adxey A > A dzopy = 0 (13)

Since actuator singularities and end-effector singularities are caused by different pa-
rameterization coordinates in the configuration manifold, both of them are called the pa-
rameterization singularities of parallel robots.
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3 Second-order singularity

The singularity sets of parallel robots consist of all the same type of singularities on
the contiguration space. These singularity sets can be subclassified into different subsets
according to the degree of deficiency of singularities. Without loss of generality, consider
the actuator singularities. Define the set of AS points

Q ={pe€Qfdhy A Adh, AdOLA -+ AdOT™[, =0} (14)
and the set annihilation vectors at p €& Q,
T,V={ve T,Q|(dh,yv) = (db,,v) = 0,i = 1, ymyj = lysryn—m} (15)
The dimension d of T,V measures the degree of deficiency (DoD) of singularities. Let
d, (0<d,<<m) denote an upper bound on d and let

Q. =1{p € Q, | dm(T,V) = k} (16)
d
be the set of actuator singularities of DoD E(0<k<<d,). We have Q,= U Q...
k=1

We introduce the notion of singularity distribution. Define

d
A = U T,VA, =U A (17)

pE st
where A,, is a distribution of annihilation spaces of dimension & on Q,, and A, is a distribu-

tion of annihilation spaces on Q,, which are called singularity distribution of parallel ro-
bots. Note that the dimensions of Q. and A,, are not necessarily the same.

Definition 4. A point p € Q,, 1s called a first-order singularity point if there does not
exist a vector vE A,, that is also tangent to Q,;. Otherwise, p i1s called a second-order sin-
gularity point (see Fig. 1).

Fig. 1 Singularity distribution along singularity manifolds

4 Degeneration of second-order singularity

A second-order singularity can be further classified into a nondegenerate singularity if
it is isolated or a degenerate one if it is continuous. All degenerate singularities form con-
tinuous curves (or surfaces) on the configuration manifold. When parallel robots drop into
these degenerate singularities, some inner seli-motions occur, which is dangerous not only
to the mechanism itself but also to the workers to operate the mechanism. Hence these de-
generate singularities in the workspace must be removed during the mechanism design.

In [ 3], Park defined degenerate singularities by degenerate Hessian matrixes of
Morse functions on configuration spaces. However, a nondegenerate Hessian matrix 1s on-
ly a sufficient condition of a nondegenerate singularity. Here we give a better definition of
degenerate singularities by the notion of singularity distribution.

Definition 5. A second-order singularity point is degenerate if and only if there exists
an involutive sub-distribution A, ZA., with a constant dimension & such that AIkCT Q..
Its integral manifold is called degenerate singularity manifold Q...

A hierarchic diagram of our classification of singularities is given in Fig. 2.
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Actuator singularities End-effector singularities

First-order singularities Second-order singularities
Degenerate singularities | | Nondegenerate singularites

Fig. 2 A hierarchic diagram of singularities of general parallel robots

S Mechanism analysis
Fig. 3 shows a planar five-bar mechanism. Let (6,,% ,6,,%) be the ambient coordi-
nates, where 0, ,0, are actuated joints., Its constraint equations are written as
h, = L,sinf, + L,sin®, — L,sinf, — L,sin®, = 0 (18)
h, = L,cos8, + L,cos?, — L,cosf, — L,cosp, —c = 0 (19)
1) CS points, By (4), all configuration singularities satisfy
dh, A dh, =L%sin(f, —6,)d0, A db, — L,L,sin($, —6,)d8, A d%,
+ L,L,sin($, —8,)d6, N d%, + L,L,sin($, — 8,)d0, A\ d¢,
+ Lisin($, — $,)d?, A\ d#, — L,L,sin($, —8,)d0, A d$, =0 (20)
1. €., sin(fa; —a,) =0, a;, Z a,, a1.,a, € {0,,9,,60,,9,) (21)
2) AS points. By (8), the actuator singularities occur if and only if
dh, A dh, A dO, A dO, = Lisin($, —¢,)d®, A d$, A df, A df, = O (22)
i. e sin($y —$,) =O0or ¢ — ¢, = kn, k=0,+1 (23)
3) ES points. Let (x5,v5) be end-effector coordinates, which are written as
Ip = Xa, L,cosf, + L,cosP,, vz = ya, + Ly sinf, + L, sin®,
By (13), we have dh, Adh, Adxg Adys=L:L:sin($, —6,)sin(?,—6,)db, A d$, A db, A d9,
=(0. Hence, the condition of ES points is ¢ —8, =k or $,—0,=kn, k=0,+1.
4) Second-order AS points. The set Q,; of actuator singularities is a curve defined by
(18), (19) and (23) in a four-dimensional Euclidean space. A basis of its tangent bundles

IS
> , @ . 9 , D

Y=Y 35 T3¢ 7735 T34
L;(sin(8, — ;) —sin(0, —$;)) y _ L, (sin($,—06,) +sin(6, —$,))
Llsin(92—51) e LlSiH(az_al) '

On the other hand, there exists a singularity distribution A,; =span{V'} along the curve

(24)

where 7, =

Q.. ,» where V' is an annihilation vector field written as
 _ 9 , 9 _ , ___ 9 , 0© _
V —-—gﬂ—l—a‘ﬁz (b=0), V' = gl-—f—@; (k. =4+1) (25)

Second-order singularities happen if and only if V' is tangent to curve Q,;. Hence, all
points satisfying ¢, =9, are second-order AS points on the actuator singularity manifold,
while the others are first-order AS points (see Fig. 3).
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® Actuated joints O Passive joints

(c) First-order AS  (d) Second-order degenerate AS
Fig.3 A planar five-bar mechanism and its different types of singular configurations

5) Degenerate AS points. Since the singularity distribution A,, has a constant dimen-
sion 1, it 1s an integrable subdistribution in the tangent bundle TQ,,. Hence, the above
second-order singularities are degenerate., The integral manifold of A,; is a one-dimension
degenerate actuator singularity submanifold in the configuration space. In this case, al-
though all actuated joints are fixed, there exists a self-motion around the joint C in the
five-bar mechanism (see Fig. 3(d)).

6) Our method can also be applied to parallel robots with redundant actuators. Con-
sider the five-bar linkage with a redundant link (see Fig. 4), and two additional constraint
equations are

&

/A

0,
L, ) /é
] 9?3 o (a) First--order (b) Degenerate actuator

singularity singularity

s

(c) End-effector singularity

Fig.4 Different types of singularities 1n a five-bar mechanism with a redundant actuated branch

h, — Ta + L,cosf, + L.cosP, — Ta, — L,cosf, — L,cos$, = 0 (26)
hy = Ya, + L,sinf, + L,sin®, — Ya, + L,sinf; + L,sin®;, = O (27)
By Theorem 3, the sufficient and necessary condition of actuator singularities is
dh; A dh, A dhs A dhy A dO; A dO, =0 (0 <1 <j<<4) (28)
Computing the above equation, we have
tan®, = tan®, = tan®, (29)

In the same manner, we can analyse its second-order singularities, degenerate singularities
and end-effector singularities. Some of the analysis results are shown in Fig, 4.

6 Conclusion

This paper provides a unified geometric framework for singularity analysis of general
parallel robots and give a fine classification of these singularities, which 1s significant for
us to understand the nature of singularities in parallel robots. The classification method
proposed can be applied to general parallel robots including redundantly actuated mecha-
nisms. Results of a typical planar five-bar linkage show that this kind of classification of
singularities is effective and has obvious geometric and physical meanings.
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